K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 9 2015

A B C D H K

Kẻ 2 đường cao AH và BK

=> AHKB là hcn => AB = HK = 10cm

=> DH = KC = (16 - 10) : 2 = 3cm

Áp dụng Pytago trong tam giác vuông ADH ta đc:

AD2 = AH2 + DH2 

=> AH = \(\sqrt{5^2-3^2}=4\)cm

Vậy SABCD \(\frac{\left(10+16\right).4}{2}=52\) (cm2)

 

10 tháng 12 2020

Kẻ AH ⊥ DC tại H ; BK ⊥ DC tại K.

=> AH // BK

Xét t/g AHD vuông tại H và t/g BKC vuông tại K có:

AD = BC (do ABCD là htc)

\(\widehat{D}=\widehat{C}\)(do ABCD là htc)

=> t/g AHD = t/g BKC (ch-gn)

=> HD = KC ; AH = KB 

Mà AH // BK

=> AHKB là hình thang

Lại có \(\widehat{AHK}=90^o\)

=> AHKB là hình chữ nhật

=> HK = AB = 10cm

DH+HK+KC = DC

=> 2CK + 10 = 16 (cm)

=> CK = 3 (cm) Áp dụng đ/l Pythagoras vào t/g BKC vuông tại K có

\(BK^2+CK^2=BC^2\)

=> \(BK^2+3^2=5^2\)

=> BK = 4 (cm)

\(S_{ABCD}=\dfrac{1}{2}.BK.\left(AB+CD\right)\)

\(=\dfrac{1}{2}.4.\left(10+16\right)=2.26=52\)cm2

Không chắc lắm :((

10 tháng 12 2020

 j nhanh thế đang đánh đánh tải lại trang xong rồi :'(((

22 tháng 1 2021

Vẽ AE // BD, AH vg góc DC

=> ABDE là hbh(dhnb)

=> ED=AB=5cm, AE=BD=12cm

EC=ED+DC=5=15=20cm

Xét tg AEC có :

AE2+AC2=122+162= 400

EC2=202=400

=>AE2+AC2=EC2

=> tg AEC vg tại A

=> AH.EC=AE.AC

=>AH = 48/5 cm

S ht ABCD= ((5+12).48/5 ):2 = 96 cm2

 

 

22 tháng 1 2021
GV
29 tháng 4 2017

a) \(dt\left(ABCD\right)=\dfrac{AB+CD}{2}.DE=\dfrac{10+6}{2}.5=40\left(cm^2\right)\)

b) Xem hình vẽ

A B C D E 6 4 5 F

Tam giác vuông EAD có: \(AE=\sqrt{AD^2-DE^2}=\sqrt{5^2-4^2}=3\)

Vì ABCD là hình thang cân nên AE = FB = 3.

Suy ra AB = EF + AE + FB = 6 + 3 + 3 = 12.

\(dt\left(ABCD\right)=\dfrac{AB+CD}{2}.DE=\dfrac{12+6}{2}.4=36\left(cm^2\right)\)

6 tháng 9 2019

B=(2.4.10+4.6.8+14.16.20)/(3.6.15+6.9.12+21.24.30)

29 tháng 4 2019

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Áp dụng công thức tính diện tích hình thang.

S = (a+b)/2.h = (10+6)/2. 5 = 40( c m 2 )

24 tháng 2 2017

Chung minh ABD đồng dạng với BDC

=> \(\widehat{ABD}\)=\(\widehat{BDC}\)

hai góc này ở vị trí sole trong

=> AB//CD