Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ( 3x + 2 )( x - 1 ) - ( x + 2 )( 3x + 1 ) = 7
<=> 3x2 - x - 2 - ( 3x2 + 7x + 2 ) = 7
<=> 3x2 - x - 2 - 3x2 - 7x - 2 = 7
<=> -8x - 4 = 7
<=> -8x = 11
<=> x = -11/8
b) ( 6x + 5 )( 2x + 3 ) - ( 4x + 3 )( 3x - 2 ) = 8
<=> 12x2 + 28x + 15 - ( 12x2 + x - 6 ) = 8
<=> 12x2 + 28x + 15 - 12x2 - x + 6 = 8
<=> 27x + 21 = 8
<=> 27x = -13
<=> x = -13/27
c) 2x( x + 3 ) - ( x + 1 )( 2x + 1 ) - 5 = 9
<=> 2x2 + 6x - ( 2x2 + 3x + 1 ) - 5 = 9
<=> 2x2 + 6x - 2x2 - 3x - 1 - 5 = 9
<=> 3x - 6 = 9
<=> 3x = 15
<=> x = 5
d) ( 5x + 3 )( 4x - 7 ) - ( 10x + 9 )( 2x - 3 ) = 10
<=> 20x2 - 23x - 21 - ( 20x2 - 12x - 27 ) = 10
<=> 20x2 - 23x - 21 - 20x2 + 12x + 27 = 10
<=> -11x + 6 = 10
<=> -11x = 4
<=> x = -4/11
a, \(\left(3x+2\right)\left(x-1\right)-\left(x+2\right)\left(3x+1\right)=7\Leftrightarrow-8x-4=7\Leftrightarrow x=-\frac{11}{8}\)
b, \(\left(6x+5\right)\left(2x+3\right)-\left(4x+3\right)\left(3x-2\right)=8\Leftrightarrow27x+21=8\Leftrightarrow x=-\frac{13}{27}\)
c, \(2x\left(x+3\right)-\left(x+1\right)\left(2x+1\right)-5=9\Leftrightarrow3x-6=9\Leftrightarrow x=5\)
d, \(\left(5x+3\right)\left(4x-7\right)-\left(10x+9\right)\left(2x-3\right)=10\Leftrightarrow-11x+6=10\Leftrightarrow x=-\frac{4}{11}\)
Tìm x, biết:
1) 2x ( x - 5) - x ( 2x - 4 ) = 15
<=> 2x2 - 10x - 2x2 + 4x - 15 = 0
<=> -6x - 15 = 0
<=> -6x = 15
<=> x = -15/6
2) ( x +1)( x + 2 ) - ( x + 4 ) ( x + 3 ) = 6
<=> x2 + 2x + x + 2 - x2 - 3x - 4x - 12 - 6 = 0
<=> -4x = -16
<=> x = 4
3) 4x2 - 4x + 5 - x ( 4x - 3) = 1 - 2x
<=> 4x2 - 4x + 5 - 4x2 + 3x - 1 + 2x = 0
<=> x + 4 = 0
<=> x = -4
4) ( x + 3 ) ( 2x + 1 ) - 2x2 = 4x - 5
<=> 2x2 + x + 6x + 3 - 2x2 - 4x + 5 = 0
<=> 3x + 8 = 0
<=> 3x = -8
<=> x = -8/3
5) -4 ( 2x - 8 ) + ( 2x - 1 )( 4x + 3 ) = 0
<=> - 8x + 32 + 8x2 + 6x - 4x - 3 = 0
.......
6) -3 . (x-2) + 4 . (2x-6) - 7 . (x-9)= 5 . (3-2)
<=> -3x + 6 + 8x - 24 - 7x + 63 - 5 = 0
<=> -2x + 40 = 0
<=> -2x = -40
<=> x = 20
Còn lại tương tự ....
1) a) \(\left(3x-1\right)\left(9x^2+3x+1\right)-4x\left(x-5\right)\)
\(=27x^3+9x^2+3x-9x^2-3x-1-4x^2+20x\)
\(=27x^3+\left(9x^2-9x^2-4x^2\right)+\left(3x-3x+20x\right)+\left(-1\right)\)
\(=27x^3-4x^2+20x-1\)
b)\(\left(7x+2\right)\left(3-4x\right)-\left(x+3\right)\left(x^2-3x+9\right)\)
\(=21x-28x^2+6-8x-x^3+3x^2-9x-3x^2+9x-27\)
\(=\left(21x-8x-9x+9x\right)+\left(-28x^2+3x^2-3x^2\right)\)\(+\left(6-27\right)\)\(+\left(-x^3\right)\)
\(=13x-28x^2-21-x^3\)
c)\(\left(4x+3\right)\left(4x-3\right)-\left(2-x\right)\left(4+2x+x^2\right)\)
\(=16x^2-12x+12x-9-8-4x-2x^2+4x+2x^2+x^3\)
\(=\left(16x^2-2x^2+2x^2\right)+\left(-12x+12x-4x+4x\right)\)\(+\left(-9-8\right)\)\(+x^3\)
\(=16x^2-17+x^3\)
d)\(\left(3x-8\right)\left(-5x+6\right)-\left(4x+1\right)\left(3x-2\right)\)
\(=-15x^2+18x+40x-48-12x^2+8x-3x+2\)
\(=\left(-15x^2-12x^2\right)+\left(18x+40x+8x-3x\right)\)\(+\left(-48+2\right)\)
\(=-27x^2+63x-46\)
e)\(\left(3x-6\right)4x-2x\left(3x+5\right)-4x^2\)
\(=12x^2-24x-6x^2-10x-4x^2\)
\(=\left(12x^2-6x^2-4x^2\right)+\left(-24x-10x\right)\)
\(=2x^2-34x\)
f)\(\left(5x-6\right)\left(6x-5\right)-x\left(3x+10\right)\)
\(=30x^2-25x-36x+30-3x^2-10x\)
\(=\left(30x^2-3x^2\right)+\left(-25x-36x-10x\right)+30\)
\(=27x^2-71x+30\)
2) a)\(x\left(x+3\right)-x^2=6\)
\(\Rightarrow x^2+3x-x^2=6\)
\(\Rightarrow\left(x^2-x^2\right)+3x=6\)
\(\Rightarrow3x=6\)
\(\Rightarrow x=2\)
Vậy x=2
b) \(2x\left(x-5\right)+x\left(-2x-1\right)=6\)
\(\Rightarrow2x^2-10x-2x^2-x=6\)
\(\Rightarrow\left(2x^2-2x^2\right)+\left(-10x-x\right)=6\)
\(\Rightarrow-11x=6\)
\(\Rightarrow x=-\dfrac{6}{11}\)
\(\)Vậy \(x=-\dfrac{6}{11}\)
c) x(x+5)-(x+1)(x-2)=7
\(\Rightarrow x^2+5x-x^2+2x-x+2=7\)
\(\Rightarrow\left(x^2-x^2\right)+\left(5x+2x-x\right)=7-2\)
\(\Rightarrow6x=5\)
\(\Rightarrow x=\dfrac{5}{6}\)
Vậy x=\(\dfrac{5}{6}\)
d)\(\left(3x+4\right)\left(6x-3\right)-\left(2x+1\right)\left(9x-2\right)=10\)
\(\Rightarrow18x^2-9x+24x-12-18x^2+4x-9x+2=10\)
\(\Rightarrow\left(18x^2-18x^2\right)+\left(-9x+24x+4x-9x\right)+\left(-12+2\right)=10\)
\(\Rightarrow10x-10=10\)
\(\Rightarrow10x=20\)
\(\Rightarrow x=2\)
Vậy x=2
a.
\(\left|5x\right|=3x+8\Leftrightarrow\left[{}\begin{matrix}-5x=3x+8\\5x=3x+8\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=4\end{matrix}\right.\)
b.
\(\left|-4x\right|=-2x+11\Leftrightarrow\left[{}\begin{matrix}-4x=-2x+11\\4x=-2x+11\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{11}{2}\\x=\dfrac{11}{6}\end{matrix}\right.\)
c.
\(\left|3x-1\right|=4x+1\Leftrightarrow\left[{}\begin{matrix}-3x+1=4x+1\\3x-1=4x+1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\)
d.
\(\left|3-2x\right|=3x-7\Leftrightarrow\left[{}\begin{matrix}-3+2x=3x-7\\3-2x=3x-7\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=2\end{matrix}\right.\)
e.
\(9-\left|-5x\right|+2x=0\Leftrightarrow\left[{}\begin{matrix}9-5x+2x=0\\9+5x+2x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-\dfrac{9}{7}\end{matrix}\right.\)
f.
\(\left(x+1\right)^2+\left|x+10\right|-x^2-12=0\Leftrightarrow\left[{}\begin{matrix}x^2+2x+1-x-10-x^2-12=0\\x^2+2x+1+x+10-x^2-12=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=21\\x=\dfrac{1}{3}\end{matrix}\right.\)
p) \(\left(9-x\right)\left(x^2+2x-3\right)\)
\(=9\left(x^2+2x-3\right)-x\left(x^2+2x-3\right)\)
\(=9x^2+18x-27-x^3-2x^2+3x\)
\(=-x^3+7x^2+21x-27\)
n) \(\left(-x+3\right)\left(x^2+x+1\right)\)
\(=-x\left(x^2+x+1\right)+3\left(x^2+x+1\right)\)
\(=-x^3-x^2-x+3x^2+3x+3\)
\(=-x^2+2x^2+2x+3\)
o) \(\left(-6x+\dfrac{1}{2}\right)\left(x^2-4x+2\right)\)
\(=-6x\left(x^2-4x+2\right)+\dfrac{1}{2}\left(x^2-4x+2\right)\)
\(=-6x^3+24x^2-12x+\dfrac{1}{2}x^2-2x+1\)
\(=-6x^3+\dfrac{49}{2}x^2-14x+1\)
q) \(\left(6x+1\right)\left(x^2-2x-3\right)\)
\(=6x\left(x^2-2x-3\right)+\left(x^2-2x-3\right)\)
\(=6x^3-12x^2-18x+x^2-2x-3\)
\(=6x^3-11x^2-20x-3\)
r) \(\left(2x+1\right)\left(-x^2-3x+1\right)\)
\(=2x\left(-x^2-3x+1\right)+\left(-x^2-3x+1\right)\)
\(=-2x^3-6x^2+2x-x^2-3x+1\)
\(=-2x^3-7x^2-x+1\)
u) \(\left(2x-3\right)\left(-x^2+x+6\right)\)
\(=2x\left(-x^2+x+6\right)-3\left(-x^2+x+6\right)\)
\(=-2x^3+2x^2+12x+3x^2-3x-18\)
\(=-2x^3+5x^2+9x-18\)
s) \(\left(-4x+5\right)\left(x^2+3x-2\right)\)
\(=-4x\left(x^2+3x-2\right)+5\left(x^2+3x-2\right)\)
\(=-4x^3-12x^2+8x+5x^2+15x-10\)
\(=-4x^3-7x^2+23x-10\)
v) \(\left(-\dfrac{1}{2}x+3\right)\left(2x+6-4x^3\right)\)
\(=-\dfrac{1}{2}x\left(2x+6-4x^3\right)+3\left(2x+6-4x^3\right)\)
\(=-x^2-3+2x^4+6x+18-12x^3\)
\(=2x^4-12x^3-x^2+6x+15\)
p: (-x+9)(x^2+2x-3)
=-x^3-2x^2+3x+9x^2+18x-27
=-x^3+7x^2+21x-27
n: (-x+3)(x^2+x+1)
=-x^3-x^2-x+3x^2+3x+3
=-x^3+2x^2+2x+3
o: (-6x+1/2)(x^2-4x+2)
=-6x^3+24x^2-12x+1/2x^2-2x+1
=-64x^3+49/2x^2-14x+1
q: (6x+1)(x^2-2x-3)
=6x^3-12x^2-18x+x^2-2x-3
=6x^3-11x^2-20x-3
r: (2x+1)(-x^2-3x+1)
=-2x^3-6x^2+2x-x^2-3x+1
=-2x^3-7x^2-x+1
u: =-2x^3+2x^2+12x+3x^2-3x-18
=-2x^3+5x^2+9x-18
s: =-4x^3-12x^2+8x+5x^2+15x-10
=-4x^3-7x^2+23x-10
Bài 1. a) 4x - 3 = 0
⇔ x = \(\dfrac{3}{4}\)
KL.....
b) - x + 2 = 6
⇔ x = - 4
KL...
c) -5 + 4x = 10
⇔ 4x = 15
⇔ x = \(\dfrac{15}{4}\)
KL....
d) 4x - 5 = 6
⇔ 4x = 11
⇔ x = \(\dfrac{11}{4}\)
KL....
h) 1 - 2x = 3
⇔ -2x = 2
⇔ x = -1
KL...
Bài 2. a) ( x - 2)( 4 + 3x ) = 0
⇔ x = 2 hoặc x = \(\dfrac{-4}{3}\)
KL......
b) ( 4x - 1)3x = 0
⇔ x = 0 hoặc x = \(\dfrac{1}{4}\)
KL.....
c) ( x - 5)( 1 + 2x) = 0
⇔ x = 5 hoặc x = \(\dfrac{-1}{2}\)
KL.....
d) 3x( x + 2) = 0
⇔ x = 0 hoặc x = -2
KL.....
Bài 3.a) 3( x - 4) - 2( x - 1) ≥ 0
⇔ x - 10 ≥ 0
⇔ x ≥ 10
0 10 b) 3 - 2( 2x + 3) ≤ 9x - 4
⇔ - 4x - 3 ≤ 9x - 4
⇔ 13x ≥1
⇔ x ≥ \(\dfrac{1}{13}\)
0 1/13
\(a)PT\Leftrightarrow4x^2-9-4x^2+20x+3x=0.\\ \Leftrightarrow23x=9.\\ \Leftrightarrow x=\dfrac{9}{23}.\\ b)PT\Leftrightarrow\left(2x+1\right)\left(4x-3\right)-\left(2x+1\right)\left(2x-1\right)=0.\\\Leftrightarrow\left(2x+1\right)\left(4x-3-2x+1\right)=0.\\ \Leftrightarrow\left(2x+1\right)\left(2x-2\right)=0.\\ \Leftrightarrow\left(2x+1\right)\left(x-1\right)=0. \)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-1}{2}.\\x=1.\end{matrix}\right.\)
\(a,\Leftrightarrow\left(3x-7\right)\left(3x+7\right)=0\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{7}{3}\\x=-\dfrac{7}{3}\end{matrix}\right.\\ b,\Leftrightarrow\left(x+2\right)\left(x-1-1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\\ c,\Leftrightarrow4x^2-7x-2-4x^2+4x+3=7\\ \Leftrightarrow-3x=6\Leftrightarrow x=-2\\ d,\Leftrightarrow3x^2+2x+x^2+2x+1-4x^2+25=0\\ \Leftrightarrow4x=-26\Leftrightarrow x=-\dfrac{13}{2}\\ e,\Leftrightarrow x^3+27-x^3+x-27=0\\ \Leftrightarrow x=0\\ f,\Leftrightarrow\left(4x-3\right)\left(4x-3+3x\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{4}\\x=\dfrac{3}{7}\end{matrix}\right.\)
a) 9x2-49=0
(3x)2-72=0
<=> (3x-7)(3x+7)=0
th1: 3x-7=0
<=>3x=7
<=>x=\(\dfrac{7}{3}\)
th2: 3x+7=0
<=>3x=-7
<=>x=\(-\dfrac{7}{3}\)