Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
101, Cho y = x2 cắt y= -x + 2 tại A, B.
a) Tính AB=?
b) Tính SAOB=?
102, Cho y= -x2 cắt y = 2x - 3 tại A, B. Kẻ OH #Hỏi cộng đồng OLM #Toán lớp 9


1)Xét pt hoành độ của (P) và (d) ta có:
\(x^2=2x+2m\)
\(x^2-2x-2m=0\)
thay m=\(\frac{1}{3}\)
\(x^2-2x-2.\frac{1}{3}=0\)
\(x^2-2x-\frac{2}{3}=0\)
GPT ta được:m=\(\frac{3+\sqrt{15}}{3}\)
m=\(\frac{3-\sqrt{15}}{3}\)
b)Vì A(x1;x2) thuộc (P)=>\(y_1=x_1^2\)
B(x2;y2) thuộc (P)=>\(y_2=x_2^2\)
áp dụng viet đc:
\(x_1+x_2=2\)
\(x_1.x_2=-2m\)
Ta có:(1+y1)(1+y2)=5
\(\left(1+x_1^2\right)\left(1+x_2^2\right)=5\)
\(1+x_2^2+x_1^2+x_1^2x_2^2=5\)
1+(x1+x2)^2-2x1x2+x1^2x2^2=5
1+(2)^2-2.(-2m)+(-2m)^2=5
1+4+4m+4m^2-5=0
4m^2+4m=0
m=-1 và m=0
2)Δ'=(-2m)^2-2.(2m^2-9)
=4m^2-4m^2+2
=2>0 ∀m
=>pt có 2 nghiệm phân biệt ∀ m
b)áp dụng viet:
x1+x2=4m/4=2m
x1.x2=2m^2-1/2
ta có :\(2x_1^2+4mx_2+2m^2-9< 0\)
\(2\left(x_1^2+2mx_2\right)+2m^2-9< 0\)
mà ta có x1+x2=2m
=>\(2\left(x_1^2+\left(x_1+x_2\right)x_2\right)+2m^2-9< 0\)
\(2\left(x_1^2+x_1x_2+x_2^2\right)+2m^2-9< 0\)
2{(x1^2+x2^2)+x1x2}+2m^2-9<0
2{x1+x2)^2-2x1x2+x1x2)+2m^2-9<0(cái này dùng phương pháp thêm bớt để tạo hàng đẳng thức nha bạn)
2{(x1+x2)^2-x1x2)+2m^2-9<0
còn lại bạn tự thay số rồi tính nha.Nhớ tick cho mk đó

Hoành độ giao điểm của (P) và (\(d_m\)) là nghiệm của phương trình:
\(-x^2=2x+m\)
\(\Leftrightarrow x^2+2x+m=0\)
Ta có: \(\Delta'=1^2-1.m=1-m\)
Để (P) cắt (\(d_m\)) tại hai điểm phân biệt \(\Leftrightarrow\Delta'>0\)\(\Leftrightarrow1-m>0\)
\(\Leftrightarrow1>m\Leftrightarrow m< 1\) (*)
Áp dụng hệ thức Vi-et ta có: \(\left\{{}\begin{matrix}x_A+x_B=-2\\x_A.x_B=m\end{matrix}\right.\)
Ta có: \(x_A^2+x_B^2=20\)
\(\Leftrightarrow\left(x_A^2+2x_Ax_B+x_B^2\right)-2x_Ax_B=20\)
\(\Leftrightarrow\left(x_A+x_B\right)^2-2x_Ax_B=20\)
\(\Leftrightarrow\left(-2\right)^2-2.m=20\)
\(\Leftrightarrow4-2.m=20\)
\(\Leftrightarrow-2.m=16\) \(\Leftrightarrow m=-8\) (t/m ĐK (*))
Vậy để (P) cắt (\(d_m\)) tại hai điểm phân biệt A và B sao cho \(x_A^2+x_B^2=20\) thì \(m=-8\)

Câu 1: ĐKXĐ: \(y\ge2\)
\(\Leftrightarrow\left\{{}\begin{matrix}6\left|2x-y\right|+3\sqrt{y-2}=15\\6\left|2x-y\right|-2\sqrt{y-2}=8\end{matrix}\right.\)
Trừ trên cho dưới ta được:
\(5\sqrt{y-2}=7\Leftrightarrow\sqrt{y-2}=\frac{7}{5}\Leftrightarrow y-2=\frac{49}{25}\Rightarrow y=\frac{99}{25}\)
Thay vào pt đầu:
\(2\left|2x-\frac{99}{25}\right|+\frac{7}{5}=5\Leftrightarrow\left|2x-\frac{99}{25}\right|=\frac{9}{5}\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-\frac{99}{5}=\frac{9}{5}\\2x-\frac{99}{5}=-\frac{9}{5}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=\frac{54}{5}\\x=9\end{matrix}\right.\)
Vậy hệ có 2 cặp nghiệm \(\left(x;y\right)=\left(\frac{54}{5};\frac{99}{5}\right);\left(9;\frac{99}{5}\right)\)
Câu 2:
Phương trình hoành độ giao điểm: \(x^2-\left(m-1\right)x-m^2-1=0\)
Ta có \(ac=-m^2-1< 0\) \(\forall m\Rightarrow\) pt luôn có 2 nghiệm trái dấu hay (d) luôn cắt (P) tại 2 điểm nằm về 2 phía trục tung
b/ Theo Viet ta có: \(\left\{{}\begin{matrix}x_1+x_2=m-1\\x_1x_2=-m^2-1\end{matrix}\right.\)
\(\left|x_1\right|+\left|x_2\right|=2\sqrt{2}\Leftrightarrow x_1^2+x_2^2+2\left|x_1x_2\right|=8\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2+2\left|x_1x_2\right|=8\)
\(\Leftrightarrow\left(m-1\right)^2-2\left(-m^2-1\right)+2\left|-m^2-1\right|=8\)
\(\Leftrightarrow5m^2-2m-3=0\Rightarrow\left[{}\begin{matrix}m=1\\m=-\frac{3}{5}\end{matrix}\right.\)

Phương trình hoành độ giao điểm: \(x^2-5x-m+3=0\) (1)
a/ Điều kiện đề bài tương đương (1) có 2 nghiệm pb trái dấu
\(\Rightarrow1.\left(-m+3\right)< 0\Rightarrow m>3\)
b/ \(\Delta=25-4\left(-m+3\right)=13+4m>0\Rightarrow m>-\frac{13}{4}\)
Khi đó theo Viet: \(\left\{{}\begin{matrix}x_1+x_2=5\\x_1x_2=-m+3\end{matrix}\right.\)
\(AB=\sqrt{26}\Rightarrow AB^2=26\)
\(\Rightarrow\left(x_1-x_2\right)^2+\left(y_1-y_2\right)^2=26\)
\(\Rightarrow\left(x_1-x_2\right)^2+\left(5x_1+m-3-5x_2-m+3\right)^2=26\)
\(\Leftrightarrow26\left(x_1-x_2\right)^2=26\)
\(\Leftrightarrow\left(x_1-x_2\right)^2=1\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-4x_1x_2=1\)
\(\Leftrightarrow25-4\left(-m+3\right)-1=0\)
\(\Rightarrow m=-3\) (t/m)

Phương trình hoành độ giao điểm:
x2 = 2x - m
<=> x2 - 2x + m = 0
Để (d) cắt (P) tại 2 điểm phân biệt thì \(\Delta>0\)
<=> (-1)2 - m > 0
<=> 1 - m > 0
<=> m < 1
Ta có: y1 = x12
y2 = x22
y1 + y2 + x12x22 = 6(x1 + x2)
<=> x12 + x22 + x12x22 = 6(x1 + x2)
<=> (x1 + x2)2 - 2x1x2 + (x1x2)2 = 6(x1 + x2)
Theo viet, ta có: \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=2\\x_1x_2=\frac{c}{a}=m\end{cases}}\)
<=> 22 - 2m + m2 = 6.2
<=> 4 - 2m + m2 = 12
<=> 4 - 2m + m2 - 12 = 0
<=> m2 - 2m - 8 = 0
<=> m = 4 (ktm) hoặc m = -2 (tm)
=> m = -2