Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(A=10^{100}+5\)
- Tận cùng A là số 5 \(\Rightarrow A⋮5\)
- Tổng các chữ số của A là \(1+5=6⋮3\Rightarrow A⋮3\) \(\)
\(\Rightarrow dpcm\)
b) \(B=10^{50}+44\)
- Tận cùng B là số 4 là số chẵn \(\Rightarrow B⋮2\)
- Tổng các chữ số của B là \(1+4+4=9⋮9\Rightarrow B⋮9\)
\(\Rightarrow dpcm\)
a)
\(A=5^{50}-5^{48}+5^{46}-5^{44}+...+5^6-5^4+5^2-1\)
\(5^2.A=5^2.\left(5^{50}-5^{48}+5^{46}-5^{44}+...+5^6-5^4+5^2-1\right)\)
\(25A=5^{52}-5^{50}+5^{48}-5^{46}+...+5^8-5^6+5^4-5^2\)
\(A+25A=\left(5^{50}-5^{48}+5^{46}-5^{44}+...+5^6-5^4+5^2-1\right)+\left(5^{52}-5^{50}+5^{48}-5^{46}+...+5^8-5^6+5^4-5^2\right)\)
\(26A=5^{22}-1\)
\(A=\dfrac{5^{22}-1}{26}\).
b)
\(26A+1=5^n\)
\(\Leftrightarrow\left(5^{52}-1\right)+1=5^n\)
\(\Leftrightarrow5^{52}=5^n\)
\(\Rightarrow n=52\).
c)
\(A=\left(5^{50}-5^{48}\right)+\left(5^{46}-5^{44}\right)+...+\left(5^6-5^4\right)+\left(5^2-1\right)\)
\(=5^{48}.\left(5^2-1\right)+5^{44}.\left(5^2-1\right)+...+5^4.\left(5^2-1\right)+1.\left(5^2-1\right)\)
\(=5^2.24.\left(5^{46}+5^{42}+...+5^2\right)+24\)
\(=25.4.6.\left(5^{46}+5^{42}+...+5^2\right)+24\)
\(=100.6.\left(5^{46}+5^{42}+...+5^2\right)+24⋮100\)
\(\Rightarrow A⋮100\).
Đáp án A
Số chia hết cho 5 nhưng không chia hết cho 2 là các số có tận cùng là 5. Nhận thấy 15,35,55 là các số có tận cùng là 5. Vậy 15,35,55 chia hết cho 5 nhưng không chia hết cho 2.
10^100 +5 = 10......0 +5 = 10......5
Ta có 10.......5 chia hết cho 5( có chữ số tận cùng là 5)
10.......5 chia hết cho 3(1+5=6;6 chia hết cho 3)
10^50+44=10.....0+44=10.....44
Ta có: 10.....44 chia hết cho 2 (có chữ số tận cùng là 4)
10.....44 chia hết cho 9( 1+4+4=9;9 chia hết cho 9)
1005 : 505 = 32
100^5 : 50^5
=(100:50)^5
=2^5
=32