Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì tích trên có 100 thừa số nên thừa số 100 - n là thừa số thứ 100
Ta thấy : Thừa số 1 = 100 - 1
Thừa số 2 = 100 - 2
.....
Thừa số 100 = 100 - n
=> n = 100 => 100 - 100 = 0
\(y^{100}=y\)
=>\(\orbr{\begin{cases}y=1\\y=0\end{cases}}\)
Vậy y \(\in\){ 1 ; 0 }
Hok tốt
a) Ta có:
A = (100 - 1).(100 - 2).(100 - 3)...(100 - n)
Mà 100 - n = 100 - 100 = 0
=> A = 0
b) Ta có:
B = 13a + 19b + 4a - 2b = 17.(a + b)
= 17 . 100 = 1700
=> B = 1700
# Học tốt #
ta có A= 100100+1/100101+1< 1
-> 100100+1/100101+1 < 100100+1+99/ 100101+1+99= 100100+100/100101+100= 100(10099+1)/ 100(100100+1) = 10099+1/100100+1 =B
-> A<B
B1: so sánh 1 phân số vs 1 ( lưu í so sánh phân số có lũy thừa lớn hơn phân số có lũy thừa còn lại)
B2: suy ra phân số đó sẽ nhỏ hơn chính bằng phân số đó +99 để đc = 100 như phần số nguyên( nếu phần nguyên là 10 thì + 9, là 7 thì + 6 .....)
B3: đặt phần nguyên làm thừa số chung sau đó sẽ ra kq giống như phân số còn lại mà ta chưa so sánh
kết quả là A<B hoặc B<A
Ta có :
\(A=\frac{100^{100}+1}{100^{101}+1}\)
\(\Rightarrow100A=\frac{100^{101}+100}{100^{101}+1}\)
\(\Rightarrow100A=1+\frac{99}{100^{101}+1}\)
lại có :
\(B=\frac{100^{99}+1}{100^{100}+1}\)
\(\Rightarrow100B=\frac{100^{100+100}}{100^{100}+1}\)
\(\Rightarrow100B=1+\frac{99}{100^{100}+1}\)
Vì \(1+\frac{99}{100^{101}+1}< 1+\frac{99}{100^{100}+1}\Rightarrow100A< 100B\)
\(\Rightarrow A< B\)
\(A=\frac{100^{2016}+1}{100^{2015}-1}\)
\(\frac{1}{100}.A=\frac{100^{2016}+1}{100\left(100^{2015}-1\right)}\)
\(=\frac{100^{2016}+1}{100^{2016}-100}\)
\(=\frac{\left(100^{2016}-100\right)+101}{100^{2016}-100}\)
\(=\frac{100^{2016}-100}{100^{2016}-100}\)\(+\frac{101}{100^{2016}-100}\)
\(=1+\frac{101}{100^{2016}-100}\)
\(B=\frac{100^{2015}+1}{100^{2014}-1}\)
\(\frac{1}{100}.B=\frac{100^{2015}+1}{100\left(100^{2014}-1\right)}\)
\(=\frac{100^{2015}+1}{100^{2015}-100}\)
\(=\frac{\left(100^{2015}-100\right)+101}{100^{2015}-100}\)
\(=\frac{100^{2015}-100}{100^{2015}-100}\)\(+\frac{101}{100^{2015}-100}\)
\(=1+\frac{101}{100^{2015}-100}\)
\(\hept{\begin{cases}Vì101>0\\100^{2016}-100>100^{2015}-100>0\end{cases}}\)
\(\Rightarrow\frac{101}{100^{2016}-100}< \frac{101}{100^{2015}-100}\)
\(\Rightarrow1+\frac{101}{100^{2016}-100}< 1+\frac{101}{100^{2015}-100}\)
\(\Rightarrow\frac{1}{100}.A< \frac{1}{100}.B\)
\(\Rightarrow A< B\left(vì\frac{1}{100}>0\right)\)
Vậy A<B
= 1000000000000
k nha
100 . 100 .100 . 100 . 1000. 100 = (100)6= ((10)2)6=1012