K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

0 bít ahihi tích nha ahihi^^

24 tháng 7 2016

Ta có:

= 10-10.10:10

= 10 - 100 : 10

= 10 - 10

= 0

Vì các số có quá trình tương tự nên kết quả là : 10 + 0 + 0 + 0 + 0 +...+ 0 = 10

17 tháng 10 2016

=> S=100a+10b+c+100b+10c+a+100c+10a+b

=> S=(100a+a+10a)+(10b+100b+b)+(c+10c+100c)

=> S=111a+111b+111c

=> S=111(a+b+c)

Vì a;b;c là số có 1 chưc số => a+b+c \(\le27\)

Mà 27<111 => S không thể nào là số chính phương

20 tháng 1 2017

Chỗ kia sai đề phải là 12 + 2+ ... + 102 = 385

Đặt A = 100+ 200+ ... + 1000^2

= 12.1002 + 22.1002 + ... + 10.1002

= 1002.( 12 + 2+ ... + 102 )

= 1002.385

= 3850000

13 tháng 11 2019

a) \(5^{1000}\)\(4^{1000}.\)

Ta có:

\(5^{1000}=\left(5^2\right)^{500}=25^{500}.\)

\(4^{1000}=\left(4^2\right)^{500}=16^{500}.\)

\(25>16\) nên \(25^{500}>16^{500}.\)

\(\Rightarrow5^{1000}>4^{1000}.\)

b) \(3^{100}\)\(2^{100}.\)

Ta có:

\(3^{100}=\left(3^2\right)^{50}=9^{50}.\)

\(2^{100}=\left(2^2\right)^{50}=4^{50}.\)

\(9>4\) nên \(9^{50}>4^{50}.\)

\(\Rightarrow3^{100}>2^{100}.\)

Chúc bạn học tốt!

14 tháng 11 2019

Cảm ơn bạn nha😙😙😙😙

15 tháng 8 2021

Chịu đang tìm bài này nhưng ...

 

8 tháng 7 2020

Bài làm:

\(\frac{1}{100.99}-\frac{1}{99.98}-\frac{1}{98.97}-...-\frac{1}{3.2}-\frac{1}{2.1}\)

\(=\frac{1}{99.100}-\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{97.98}+\frac{1}{98.99}\right)\)

\(=\frac{1}{99.100}-\left(\frac{2-1}{1.2}+\frac{3-2}{2.3}+...+\frac{98-97}{97.98}+\frac{99-98}{98.99}\right)\)

\(=\frac{1}{99.100}-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{97}-\frac{1}{98}+\frac{1}{98}-\frac{1}{99}\right)\)

\(=\frac{1}{99.100}-\left(1-\frac{1}{99}\right)\)

\(=\frac{1}{99.100}-\frac{98}{99}\)

\(=\frac{1-98.100}{99.100}=\frac{1-9800}{9900}=-\frac{9799}{9900}\)

Học tốt!!!!

8 tháng 7 2020

\(\left(\frac{1}{100.99}\right)-\left(\frac{1}{99.98}\right)-\left(\frac{1}{98.97}\right)-...-\left(\frac{1}{3.2}\right)-\left(\frac{1}{2.1}\right)\)

\(=\frac{1}{100.99}-\left(\frac{1}{99.98}+\frac{1}{98.97}+...+\frac{1}{2.1}\right)\)

\(=\frac{1}{99}-\frac{1}{100}-\left(\frac{1}{98}-\frac{1}{99}+\frac{1}{97}-\frac{1}{98}+...+1+\frac{1}{2}\right)\)

\(=\frac{1}{99}-\frac{1}{100}-\left(1-\frac{1}{99}\right)\)

\(=\frac{1}{99}-\frac{1}{100}-1+\frac{1}{99}\)

\(=\frac{2}{99}-\frac{101}{100}\)

24 tháng 2 2019

\(A=\left(\frac{1}{16}-1\right)\left(\frac{1}{25}-1\right)\left(\frac{1}{36}-1\right)...\left(\frac{1}{100}-1\right)\)

\(-A=\left(1-\frac{1}{16}\right)\left(1-\frac{1}{25}\right)\left(1-\frac{1}{36}\right)...\left(1-\frac{1}{100}\right)\)

\(-A=\frac{15}{16}\cdot\frac{24}{25}\cdot\frac{35}{36}\cdot...\cdot\frac{99}{100}\)

\(-A=\frac{\left(3\cdot5\right)\left(4\cdot6\right)\left(5\cdot7\right)...\left(9\cdot11\right)}{\left(4\cdot4\right)\left(5\cdot5\right)\left(6\cdot6\right)...\left(10\cdot10\right)}\)

\(-A=\frac{\left(3\cdot4\cdot5\cdot...\cdot9\right)\left(5\cdot6\cdot7\cdot...\cdot11\right)}{\left(4\cdot5\cdot6\cdot...\cdot10\right)\left(4\cdot5\cdot6\cdot...\cdot10\right)}\)

\(-A=\frac{3\cdot11}{10\cdot4}=\frac{33}{40}\)

\(A=-\frac{33}{40}\)