Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left\{{}\begin{matrix}x^2-3xy+y^2=-1\\2x^2+xy+2y^2=8\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x^2+y^2-3xy=-1\\2x^2+2y^2+xy=8\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2+y^2-3xy=-1\\2\left(x^2+y^2\right)+xy=8\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\left(x+y\right)^2-2xy-3xy=-1\\2\left(\left(x+y\right)^2-2xy\right)+xy=8\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x+y\right)^2-5xy=-1\\2\left(x+y\right)^2-4xy+xy=8\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\left(x+y\right)^2-5xy=-1\\2\left(x+y\right)^2-3xy=8\end{matrix}\right.\)....(1)
đặt : \(\left\{{}\begin{matrix}xy=u\\x+y=v\end{matrix}\right.\) \(\Rightarrow\left(1\right)\Leftrightarrow\left\{{}\begin{matrix}v^2-5u=-1\\2v^2-3u=8\end{matrix}\right.\) giải phương trình này bằng phương pháp thế
sau khi tìm được \(u\) và \(v\) tiếp đến ta áp dụng định lí vi ét đảo để tìm \(x\) và \(y\)
Ta có: a2 = 25 => a = 5 độ dài trục lớn 2a = 10
b2 = 9 => b = 3 độ dài trục nhỏ 2a = 6
c2 = a2 – b2 = 25 – 9 = 16 => c = 4
Vậy hai tiêu điểm là : F1(-4 ; 0) và F2(4 ; 0)
Tọa độ các đỉnh A1(-5; 0), A2(5; 0), B1(0; -3), B2(0; 3).