K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 2 2023

`x^2-4x+y^2-6y+15=2`

`<=>x^2-4x+4+y^2-6y+9=0`

`<=>(x-2)^2+(y-3)^2=0`

 `=>x-2=0` và `y-3=0`

`<=>x=2` và `y=3`

25 tháng 2 2023

Ta có: 

�2−4�+�2−6�+15=2⇔�2−4�+4+�2−6�+9=0⇔(�−2)2+(�−3)2=0⇔{(�−2)2=0(�−3)2=0⇔{�=2�=3

(vì (�−2)2≥0 với mọi �∈�(�−3)2≥0 với mọi �∈�).

Vậy �=2�=3

1 tháng 3 2022

\(x^2-4x+y^2-6y+15=2\)

\(\Leftrightarrow\left(x^2-4x+4\right)+\left(y^2-9y+9\right)+2=2\)

\(\Leftrightarrow\left(x-2\right)^2+\left(y-3\right)^2=0\)

Vì \(\left(x-2\right)^2\ge0;\left(y-3\right)^2\ge0\) 

Mà \(\left(x-2\right)^2+\left(y-3\right)^2=0\)

\(\Rightarrow\left\{{}\begin{matrix}\left(x-2\right)^2=0\\\left(y-3\right)^2=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=3\end{matrix}\right.\)

Vậy (x;y) = (2;3)

NV
1 tháng 3 2022

\(\Leftrightarrow\left(x^2-4x+4\right)+\left(y^2-6y+9\right)=0\)

\(\Leftrightarrow\left(x-2\right)^2+\left(y-3\right)^2=0\)

Do \(\left\{{}\begin{matrix}\left(x-2\right)^2\ge0\\\left(y-3\right)^2\ge0\end{matrix}\right.\) ;\(\forall x;y\Rightarrow\left(x-2\right)^2+\left(y-3\right)^2\ge0\)

Đẳng thức xảy ra khi và chỉ khi:

\(\left\{{}\begin{matrix}x-2=0\\y-3=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=2\\y=3\end{matrix}\right.\)

16 tháng 3 2021

\(x^2-4x+y^2-6x+15=2\)

\(\Leftrightarrow\left(x^2-4x+4\right)+\left(y^2-6x+9\right)-4-9+15-2=0\)

\(\Leftrightarrow\left(x-2\right)^2+\left(y-3\right)^2=0\)

Lại có :

\(\left\{{}\begin{matrix}\left(x-2\right)^2\ge0\\\left(y-3\right)^2\ge0\end{matrix}\right.\) \(\forall x,y\)

Dấu "=" xảy ra \(\Leftrightarrow x=2;y=3\)

16 tháng 3 2021

Bạn có chắc chắn ko

29 tháng 3 2021

đến h vẫn còn ôn thi à 

\(x^2-4x+y^2-6y+15=2\)

\(< =>\left(x^2-4x+4\right)+\left(y^2-6y+9\right)=0\)

\(< =>\left(x-2\right)^2+\left(y-3\right)^2=0\)

Do \(\left(x-2\right)^2\ge0;\left(y-3\right)^2\ge0\)

\(=>\left(x-2\right)^2+\left(y-3\right)^2\ge0\)

Dấu "=" xảy ra \(< =>\hept{\begin{cases}x=2\\y=3\end{cases}}\)

10 tháng 2 2022

camon

 

29 tháng 7 2015

 

9x^2+ y^2 + 2z^2 - 18x + 4z - 6y + 20 = 0

<=>9x2-18x+9+y2-6y+9+2z2+4z+2=0

<=>(3x-3)2+(y-3)2+2.(z2+2z+1)=0

<=>(3x-3)2+(y-3)2+2.(z+1)2=0

<=>3x-3=0 và y-3=0 và z+1=0

<=>x=1 và y=3 và z=-1

 

14 tháng 12 2016

\(9x^2+y^2+2z^2-18x+4z-6y+20=0\)

\(\Leftrightarrow\left(9x^2-18x+9\right)+\left(y^2-6y+9\right)+\left(2z^2+4z+2\right)=0\)

\(\Leftrightarrow9\left(x^2-2x+1\right)+\left(y-3\right)^2+2\left(z^2+2z+1\right)=0\)

\(\Leftrightarrow9\left(x-1\right)^2+\left(y-3\right)^2+2\left(z+1\right)^2=0\)

\(\Leftrightarrow\begin{cases}9\left(x-1\right)^2=0\\\left(y-3\right)^2=0\\2\left(z+1\right)^2=0\end{cases}\)\(\Leftrightarrow\begin{cases}x-1=0\\y-3=0\\z+1=0\end{cases}\)

\(\Leftrightarrow\begin{cases}x=1\\y=3\\z=-1\end{cases}\)

=>x^2-4x+4+y^2-6y+9=0

=>(x-2)^2+(y-3)^2=0

=>x=2 và y=3

8 tháng 3 2019

\(x^2-4x+y^2-6y+15=2\)

\(\Rightarrow x^2-4x+4+y^2-6y+9+2=2\)

\(\Rightarrow\left(x-2\right)^2+\left(y-3\right)^2=0\Rightarrow\hept{\begin{cases}x=2\\y=3\end{cases}}\)

8 tháng 3 2019

x^2-4x+y^2-6y+15=0

x^2-4x+4+y^2-6y+9+2=2

(x-2)^2+(y-3)^2=0

do x-2)^2>=o, (y-3)^2>= 0( ghi chú : >= là lớn hơn hoặc bằng)

vậy x-2=0 và y-3=0

x=2 và y=3

vậy x=2 và y=3 là nghiệm phương trình

3 tháng 6 2017

a) \(x^2-8x+y^2+6y+25=0\)

\(\left(x-8\right)x+y\left(y+6\right)+25=0\)

\(x^2+y^2+6y+25=8x\)

\(\Rightarrow x=4,y=-3\)

3 tháng 6 2017

b )​4x2-4x+9y2 -12y +5

<=> [( 2x )2​ - 4x + 1 ] [ (3y) 2 ​- 12y + 4 )] = 0

<=> ( 2x - 1 )2 ​ + ( 3y - 2 )2​ =0   ( Vì (2x -1)2 ​>=0 , ( 3y - 2 )2 >= 0 )

<=> 2x - 1 = 0 và 3y -2 = 0

<=> x = 1/2     và y = 2/3