Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c) \(\left(x^2-1\right)^{10}+\left(y^2-36\right)^{12}\le0\)
Ta có:
\(\left\{{}\begin{matrix}\left(x^2-1\right)^{10}\ge0\\\left(y^2-36\right)^{12}\ge0\end{matrix}\right.\forall x,y.\)
\(\Rightarrow\left(x^2-1\right)^{10}+\left(y^2-36\right)^{12}\ge0\) \(\forall x,y.\)
Mà \(\left(x^2-1\right)^{10}+\left(y^2-36\right)^{12}\le0\)
\(\Rightarrow\left(x^2-1\right)^{10}+\left(y^2-36\right)^{12}=0\)
\(\Rightarrow\left\{{}\begin{matrix}\left(x^2-1\right)^{10}=0\\\left(y^2-36\right)^{12}=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x^2-1=0\\y^2-36=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x^2=1\\y^2=36\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\\\left[{}\begin{matrix}y=6\\y=-6\end{matrix}\right.\end{matrix}\right.\)
Vậy \(\left(x;y\right)\in\left\{1;6\right\},\left\{-1;-6\right\}.\)
Chúc bạn học tốt!
Ta có : 1 = 0 + 1 ; 5 = 2 + 3; 9 = 4 + 5;
13 = 6 +7 ; 17 = 8+ 9; ....
Do đó => x = a + (a+1) (a ∈∈N*)
=> 1 + 5 + 9+ 13 + 17 +....+ x = 4950
= 1 + 2+3+4+5+6+...+ a + (a+1) = 4950
Hay [(a+1)+1]×(a+1)2[(a+1)+1]×(a+1)2 = 4950
=> (a+1)(a+2) = 4950 .2 = 9900
=> (a+1)(a+2) = 99.100
=> a = 98
Do đó : x = a+ (a+1) = 98 + (98 + 1) = 197
R(x)=-x^5+x^3
vì P(x)+Q(x)+R(x)=(x^5-x^4)+(x^4-x^3)+(-x^5+x^3)
P(x)+Q(x)+R(x)=(x^5-x^5)+(x^4-x^4)+(x^3-x^3)=0
vậy là xong
Ta có : \(4x-\left(2x+1\right)=3-\frac{1}{3}+x\)
(=) \(4x-2x-1=3-\frac{1}{3}+x\)
(=) \(4x-2x-x=3-\frac{1}{3}+1\)
(=) \(x=\frac{11}{3}\)
We have \(3x^2+8x^3+x^4+9-8x^3-3x^2\)
\(=\left(3x^2-3x^2\right)+\left(8x^3-8x^3\right)+\left(x^4-9\right)\)
\(=x^4-9\)
If my answer is right, I hope you k for me =)) =.='
key: \(3x^2+8x^3+x^4+9+\left(-2x\right)^3-3x^2\)
\(=3x^2+8x^3+x^4+9-2x^3-3x^2\)
\(=\left(3x^2-3x^2\right)+\left(8x^3-2x^3\right)+x^4+9\)
\(=4x^3+x^4+9\)
^3 la j
\(x\in\left(\infty;-\infty\right)\)
\(\left(1-x\right)^3=-\left(x-1\right)^3\)
\(-\left(x-1\right)^3=2^5.3\)
\(1-2\sqrt[3]{12}\)
Sau đó bạn tự\(\Rightarrow\)X nha