K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 5 2021

a,<=>x-x=3+5

<=>x=8

s:={8}

 

7 tháng 5 2021

1) \(\left(x+2\right)\left(x-3\right)=0\Leftrightarrow\left[{}\begin{matrix}x+2=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=3\end{matrix}\right.\)

Vậy tập nghiệm \(S=\left\{-2;3\right\}\)

2) \(\left(2x+3\right)\left(-x+7\right)=0\Leftrightarrow\left[{}\begin{matrix}2x+3=0\\-x+7=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-3}{2}\\x=7\end{matrix}\right.\)

Vậy...

3) \(\left(x-1\right)\left(x+5\right)\left(-3x+8\right)=0\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x+5=0\\-3x+8=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-5\\x=\dfrac{8}{3}\end{matrix}\right.\)

Vậy...

4) \(x\left(x^2-1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\pm1\end{matrix}\right.\)

Vậy...

23 tháng 9 2018

1,=\(x^2-3x-2x^2+6x=-x^2+3x\)

2,=\(3x^2-x-5+15x=3x^2+14x-5\)

3,=\(5x+15-6x^2-6x=-6x^2-x+15\)

4,=\(4x^2+12x-x-3=4x^2+11x-3\)

5: =>(x+5)^3=0

=>x+5=0

=>x=-5

6: =>(2x-3)^2=0

=>2x-3=0

=>x=3/2

7: =>(x-6)(x-10)=0

=>x=10 hoặc x=6

8: \(\Leftrightarrow x^3-12x^2+48x-64=0\)

=>(x-4)^3=0

=>x-4=0

=>x=4

19 tháng 2 2019

1) \(\left(5x-4\right)\left(4x+6\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}5x-4=0\\4x-6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}5x=4\\4x=6\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{4}{5}\\x=\dfrac{3}{2}\end{matrix}\right.\)

Vậy phương trình có tập nghiệm S = \(\left\{\dfrac{4}{5};\dfrac{3}{2}\right\}\)

2) \(\left(4x-10\right)\left(24+5x\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}4x-10=0\\24+5x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}4x=10\\5x=-24\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=\dfrac{-24}{5}\end{matrix}\right.\)

Vậy phương trình có tập nghiệm S = \(\left\{\dfrac{5}{2};\dfrac{-24}{5}\right\}\)

3) \(\left(x-3\right)\left(2x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\2x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\2x=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=\dfrac{-1}{2}\end{matrix}\right.\)

Vậy phương trình có tập nghiệm S = \(\left\{3;\dfrac{-1}{2}\right\}\)

14 tháng 10 2018

1) \(2\left(x+2\right)-\left(3x+1\right)\left(x+2\right)=0\)

\(\left(x+2\right)\left(2-3x-1\right)=0\)

\(\left(x+2\right)\left(1-3x\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x+2=0\\1-3x=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-2\\x=\frac{1}{3}\end{cases}}}\)

2) \(3x\left(x-3\right)-\left(2x-6\right)=0\)

\(3x\left(x-3\right)-2\left(x-3\right)=0\)

\(\left(x-3\right)\left(3x-2\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x-3=0\\3x-2=0\end{cases}\Rightarrow\orbr{\begin{cases}x=3\\x=\frac{2}{3}\end{cases}}}\)

3) \(\left(2x-1\right)^2=\left(3x-5\right)^2\)

\(\left(2x-1\right)^2-\left(3x-5\right)^2=0\)

\(\left(2x-1-3x+5\right)\left(2x-1+3x-5\right)=0\)

\(\left(4-x\right)\left(5x-6\right)=0\)

\(\Rightarrow\orbr{\begin{cases}4-x=0\\5x-6=0\end{cases}\Rightarrow\orbr{\begin{cases}x=4\\x=\frac{6}{5}\end{cases}}}\)

4) \(\left(4x+3\right)\left(x-1\right)=x^2-1\)

\(\left(4x+3\right)\left(x-1\right)=\left(x+1\right)\left(x-1\right)\)

\(\left(4x+3\right)\left(x-1\right)-\left(x+1\right)\left(x-1\right)=0\)

\(\left(x-1\right)\left(4x+3-x-1\right)=0\)

\(\left(x-1\right)\left(3x+2\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x-1=0\\3x+2=0\end{cases}\Rightarrow\orbr{\begin{cases}x=1\\x=\frac{-2}{3}\end{cases}}}\)

5) \(6-4x-\left(2x-3\right)\left(x-3\right)=0\)

\(-2\left(2x-3\right)-\left(2x-3\right)\left(x-3\right)=0\)

\(\left(2x-3\right)\left(-2-x+3\right)=0\)

\(\left(2x-3\right)\left(1-x\right)=0\)

\(\Rightarrow\orbr{\begin{cases}2x-3=0\\1-x=0\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{3}{2}\\x=1\end{cases}}}\)

6) \(2x^2-5x-7=0\)

\(2x^2+2x-7x-7=0\)

\(2x\left(x+1\right)-7\left(x+1\right)=0\)

\(\left(x+1\right)\left(2x-7\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x+1=0\\2x-7=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-1\\x=\frac{7}{2}\end{cases}}}\)

7) \(x^2-x-12=0\)

\(x^2+3x-4x-12=0\)

\(x\left(x+3\right)-4\left(x+3\right)\)

\(\left(x+3\right)\left(x-4\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x+3=0\\x-4=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-3\\x=4\end{cases}}}\)

8) \(3x^2+14x-5=0\)

\(3x^2+15x-x-5=0\)

\(3x\left(x+5\right)-\left(x+5\right)=0\)

\(\left(x+5\right)\left(3x-1\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x+5=0\\3x-1=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-5\\x=\frac{1}{3}\end{cases}}}\)

5 tháng 5 2019

a, (x+2)(x-3)=0

\(\left\{{}\begin{matrix}x+2=0\\x+3=0\end{matrix}\right.\left\{{}\begin{matrix}x=-2\\x=-3\end{matrix}\right.\)

=>S={-2;-3}

b, (x-5)(7-x)=0

\(\left\{{}\begin{matrix}x-5=0\\7-x=0\end{matrix}\right.\left\{{}\begin{matrix}x=5\\-x=-7\end{matrix}\right.\left\{{}\begin{matrix}x=5\\x=7\end{matrix}\right.\)

=>S={5;7}

c, (2x+3)(-x+7)=0

\(\left\{{}\begin{matrix}2x+3=0\\-x+7=0\end{matrix}\right.\left\{{}\begin{matrix}2x=-3\\-x=-7\end{matrix}\right.\left\{{}\begin{matrix}x=-\frac{3}{2}\\x=7\end{matrix}\right.\)

=>S={-3/2;7}

5 tháng 5 2019

a) (x+2)(x+3)=0

<=> \(\left\{{}\begin{matrix}x+2=0\\x-3=0\end{matrix}\right.\)

<=> \(\left\{{}\begin{matrix}x=-2\\x=3\end{matrix}\right.\)

b) (x-5)(7-x)

<=> \(\left\{{}\begin{matrix}x-5=0\\7-x=0\end{matrix}\right.\)

<=> \(\left\{{}\begin{matrix}x=5\\x=7\end{matrix}\right.\)

c) ( 2x+3)(-2+7)

<=>\(\left\{{}\begin{matrix}2x+3=0\\7-2=0\end{matrix}\right.\)

<=> \(\left\{{}\begin{matrix}x=\frac{-3}{2}\\x=\frac{2}{7}\end{matrix}\right.\)

d) ( -10x+5)(2x+8)

<=>\(\left\{{}\begin{matrix}5-10x=0\\2x+8=0\end{matrix}\right.\)

<=> \(\left\{{}\begin{matrix}x=\frac{1}{2}\\x=\frac{-4}{1}\end{matrix}\right.\)

e) (x-1)(x+5)(-3x+8)=0

<=> \(\left\{{}\begin{matrix}x-1=0\\x+5=0\\8-3x=0\end{matrix}\right.\)

<=> \(\left\{{}\begin{matrix}x=1\\x=-5\\x=\frac{8}{3}\end{matrix}\right.\)

f) (x-1)(3x+1)=0

<=>\(\left\{{}\begin{matrix}x-1=0\\3x+1=0\end{matrix}\right.\)

<=>\(\left\{{}\begin{matrix}x=1\\x=\frac{-1}{3}\end{matrix}\right.\)

g) (x-1)(x+2)(x-3)=0

<=>\(\left\{{}\begin{matrix}x-1=0\\x+2=0\\x-3=0\end{matrix}\right.\)

<=> \(\left\{{}\begin{matrix}x=1\\x=-2\\x=3\end{matrix}\right.\)

h) (5x+3)(x2+4)(x-1)=0

<=> \(\left\{{}\begin{matrix}5x+3=0\\x-1=0\end{matrix}\right.\)

x2+4 > 0 với mọi x∈ R

<=>\(\left\{{}\begin{matrix}x=\frac{-3}{5}\\x=1\end{matrix}\right.\)

Bạn tự kết luận nha , thông cảm cho tớ !leuleu

28 tháng 9 2018

\(2x\left(x-3\right)-x+3=0\)

<=>  \(2x\left(x-3\right)-\left(x-3\right)=0\)

<=>  \(\left(x-3\right)\left(2x-1\right)=0\)

<=>  \(\orbr{\begin{cases}x=3\\x=\frac{1}{2}\end{cases}}\)

Vậy...

24 tháng 8 2018

a) \(\left(x-2\right)\left(x^2+2x+7\right)+2\left(x^2-4\right)-5\left(x-2\right)=0\)

\(\Rightarrow\left(x-2\right)\left(x^2+2x+7\right)+2\left(x-2\right)\left(x+2\right)-5\left(x-2\right)=0\)

\(\Rightarrow\left(x-2\right)\left[x^2+2x+7+2\left(x+2\right)-5\right]=0\)

\(\Rightarrow\left(x-2\right)\left(x^2+2x+7+2x+4-5\right)=0\)

\(\Rightarrow\left(x-2\right)\left(x^2+4x+6\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x-2=0\\x^2+4x+6=0\end{matrix}\right.\)

Ta có:

\(x^2+4x+6\)

\(=x^2+2.x.2+4+2\)

\(=\left(x+2\right)^2+2\)

\(\left(x+2\right)^2\ge0\) với mọi x

\(\Rightarrow\left(x+2\right)^2+2\ge2\) với mọi x

\(\Rightarrow x^2+4x+6\) vô nghiệm

\(\Rightarrow x-2=0\)

\(\Rightarrow x=2\)

b) \(3x\left(x-1\right)+\left(x-1\right)=0\)

\(\Rightarrow\left(x-1\right)\left(3x+1\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x-1=0\\3x+1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=1\\x=-\dfrac{1}{3}\end{matrix}\right.\)

c) \(2\left(x+3\right)x^2-3x=0\)

\(\Rightarrow x\left[2\left(x+3\right)x-3\right]=0\)

\(\Rightarrow x\left(2x^2+6x-3\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\2x^2+6x-3=0\end{matrix}\right.\)

Ta có:

\(2x^2+6x-3\)

\(=2\left(x^2+3x-\dfrac{3}{2}\right)\)

\(=2\left(x^2+2.x.\dfrac{3}{2}+\dfrac{9}{4}-\dfrac{9}{4}-\dfrac{3}{2}\right)\)

\(=2\left(x+\dfrac{3}{2}\right)^2-\dfrac{15}{2}\)

\(2\left(x+\dfrac{3}{2}\right)^2\ge0\) với mọi x

\(\Rightarrow2\left(x+\dfrac{3}{2}\right)^2-\dfrac{15}{2}\ge-\dfrac{15}{2}\) với mọi x

\(\Rightarrow2x^2+6x-3\) vô nghiệm

\(\Rightarrow x=0\)

24 tháng 8 2018

Cảm ơn ạ

10 tháng 1 2018

1 ) \(\left(x-4\right)^2-25=0\)

\(\Leftrightarrow\left(x-4-5\right)\left(x-4+5\right)=0\)

\(\Leftrightarrow\left(x-9\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=9\\x=-1\end{matrix}\right.\)

2 ) \(\left(x-3\right)^2-\left(x-1\right)^2=0\)

\(\Leftrightarrow\left(x-3+x-1\right)\left(x-3-x+1\right)=0\)

\(\Leftrightarrow-2\left(2x-4\right)=0\)

\(\Leftrightarrow x=2.\)

3 ) \(\left(x^2-4\right)\left(2x+3\right)=\left(x^2-4\right)\left(x-1\right)\)

\(\Leftrightarrow\left(x^2-4\right)\left(2x+3-x+1\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left(x+4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-2\\x=-4\end{matrix}\right.\)

4 ) \(\left(x^2-1\right)-\left(x+1\right)\left(2-3x\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(x-1-2+3x\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(4x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=\dfrac{3}{4}\end{matrix}\right.\)

5 ) \(x^3+x^2+x+1=0\)

\(\Leftrightarrow\left(x^2+1\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2=-1\left(loại\right)\\x=-1.\end{matrix}\right.\)

6 ) \(x^3+x^2-x-1=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)

7 ) \(2x^3+3x^2+6x+5=0\)

\(\Leftrightarrow2x^3+2x^2+x^2+x+5x+5=0\)

\(\Leftrightarrow2x^2\left(x+1\right)+x\left(x+1\right)+5\left(x+1\right)=0\)

\(\Leftrightarrow\left(2x^2+x+5\right)\left(x+1\right)=0\)

\(\Leftrightarrow x=-1.\)

8 ) \(x^4-4x^3-19x^2+106x-120=0\)

\(\Leftrightarrow x^4-4x^3-19x^2+76x+30x-120=0\)

\(\Leftrightarrow x^3\left(x-4\right)-19x\left(x-4\right)+30\left(x-4\right)=0\)

\(\Leftrightarrow\left(x^3-19x+30\right)\left(x-4\right)=0\)

\(\Leftrightarrow\left(x^3-8-19x+38\right)\left(x-4\right)\)

\(\Leftrightarrow\left(x-2\right)\left(x^2+4x+23\right)\left(x-4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=4\end{matrix}\right.\)

9 ) \(\left(x^2-3x+2\right)\left(x^2+15x+56\right)+8=0\)

\(\Leftrightarrow\left(x-2\right)\left(x-1\right)\left(x+7\right)\left(x+8\right)+8=0\)

\(\Leftrightarrow\left(x^2+7x-x-7\right)\left(x^2+8x-2x-16\right)+8=0\)

\(\Leftrightarrow\left(x^2+6x-7\right)\left(x^2+6x-16\right)+8=0\)

Đặt \(x^2+6x-7=t\)

\(\Leftrightarrow t\left(t-9\right)+8=0\)

\(\Leftrightarrow t^2-9t+8=0\)

\(\Leftrightarrow\left[{}\begin{matrix}t=8\\t=1\end{matrix}\right.\)

Khi t = 8 \(\Leftrightarrow x^2+6x-7=8\Leftrightarrow x^2+6x-15\Leftrightarrow\left[{}\begin{matrix}x=-3+2\sqrt{6}\\x=-3-2\sqrt{6}\end{matrix}\right.\)

Khi t = 1 \(\Leftrightarrow x^2+6x-7=1\Leftrightarrow x^2+6x-8=0\Leftrightarrow\left[{}\begin{matrix}x=-3+\sqrt{17}\\x=-3-\sqrt{17}\end{matrix}\right.\)

Vậy ........

Bài 1:

a) 5(x-3)-4=2(x-1)

\(\Leftrightarrow5x-15-4=2x-2\)

\(\Leftrightarrow5x-19-2x+2=0\)

\(\Leftrightarrow3x-17=0\)

\(\Leftrightarrow3x=17\)

\(\Leftrightarrow x=\frac{17}{3}\)

Vậy: \(x=\frac{17}{3}\)

b) 5-(6-x)=4(3-2x)

\(\Leftrightarrow5-6+x=12-8x\)

\(\Leftrightarrow-1+x-12+8x=0\)

\(\Leftrightarrow-13+9x=0\)

\(\Leftrightarrow9x=13\)

\(\Leftrightarrow x=\frac{13}{9}\)

Vậy: \(x=\frac{13}{9}\)

c) (3x+5)(2x+1)=(6x-2)(x-3)

\(\Leftrightarrow6x^2+3x+10x+5=6x^2-18x-2x+6\)

\(\Leftrightarrow6x^2+13x+5=6x^2-20x+6\)

\(\Leftrightarrow6x^2+13x+5-6x^2+20x-6=0\)

\(\Leftrightarrow33x-1=0\)

\(\Leftrightarrow33x=1\)

\(\Leftrightarrow x=\frac{1}{33}\)

Vậy: \(x=\frac{1}{33}\)

d) \(\left(x+2\right)^2+2\left(x-4\right)=\left(x-4\right)\left(x-2\right)\)

\(\Leftrightarrow x^2+4x+4+2x-8=x^2-2x-4x+8\)

\(\Leftrightarrow x^2+6x-4=x^2-6x+8\)

\(\Leftrightarrow x^2+6x-4-x^2+6x-8=0\)

\(\Leftrightarrow12x-12=0\)

\(\Leftrightarrow x=1\)

Vậy:x=1

Bài 2:

a)\(\frac{x}{3}-\frac{5x}{6}-\frac{15x}{12}=\frac{x}{4}-5\)

\(\Leftrightarrow\frac{x}{3}-\frac{5x}{6}-\frac{5x}{4}-\frac{x}{4}+5=0\)

\(\Leftrightarrow\frac{4x}{12}-\frac{10x}{12}-\frac{15x}{12}-\frac{3x}{12}+\frac{60}{12}=0\)

\(\Leftrightarrow4x-10x-15x-3x+60=0\)

\(\Leftrightarrow-24x+60=0\)

\(\Leftrightarrow-24x=-60\)

\(\Leftrightarrow x=\frac{5}{2}\)

Vậy: \(x=\frac{5}{2}\)

b) \(\frac{8x-3}{4}-\frac{3x-2}{2}=\frac{2x-1}{2}+\frac{x+3}{4}\)

\(\Leftrightarrow\frac{8x-3}{4}-\frac{3x-2}{2}-\frac{2x-1}{2}-\frac{x+3}{4}=0\)

\(\Leftrightarrow\frac{8x-3}{4}-\frac{2\left(3x-2\right)}{4}-\frac{2\left(2x-1\right)}{4}-\frac{x+3}{4}=0\)

\(\Leftrightarrow8x-3-2\left(3x-2\right)-2\left(2x-1\right)-\left(x+3\right)=0\)

\(\Leftrightarrow8x-3-6x+4-4x+2-x-3=0\)

\(\Leftrightarrow-3x=0\)

\(\Leftrightarrow x=0\)

Vậy: x=0

c) \(\frac{x-1}{2}-\frac{x+1}{15}-\frac{2x-13}{6}=0\)

\(\Leftrightarrow\frac{15\left(x-1\right)}{30}-\frac{2\left(x+1\right)}{30}-\frac{5\left(2x-13\right)}{30}=0\)

\(\Leftrightarrow15\left(x-1\right)-2\left(x+1\right)-5\left(2x-13\right)=0\)

\(\Leftrightarrow15x-15-2x-2-10x+65=0\)

\(\Leftrightarrow3x+48=0\)

\(\Leftrightarrow3x=-48\)

\(\Leftrightarrow x=-16\)

Vậy: x=-16

d) \(\frac{3\left(3-x\right)}{8}+\frac{2\left(5-x\right)}{3}=\frac{1-x}{2}-2\)

\(\Leftrightarrow\frac{3\left(3-x\right)}{8}+\frac{2\left(5-x\right)}{3}-\frac{1-x}{2}+2=0\)

\(\Leftrightarrow\frac{9\left(3-x\right)}{24}+\frac{16\left(5-x\right)}{24}-\frac{12\left(1-x\right)}{24}+\frac{48}{24}=0\)

\(\Leftrightarrow9\left(3-x\right)+16\left(5-x\right)-12\left(1-x\right)+48=0\)

\(\Leftrightarrow27-9x+80-16x-12+12x+48=0\)

\(\Leftrightarrow-13x+143=0\)

\(\Leftrightarrow-13x=-143\)

\(\Leftrightarrow x=11\)

Vậy: x=11

e) \(\frac{3\left(5x-2\right)}{4}-2=\frac{7x}{3}-5\left(x-7\right)\)

\(\Leftrightarrow\frac{3\left(5x-2\right)}{4}-2-\frac{7x}{3}+5\left(x-7\right)=0\)

\(\Leftrightarrow\frac{9\left(5x-2\right)}{12}-\frac{24}{12}-\frac{28x}{12}+\frac{60\left(x-7\right)}{12}=0\)

\(\Leftrightarrow9\left(5x-2\right)-24-28x+60\left(x-7\right)=0\)

\(\Leftrightarrow45x-18-24-28x+60x-420=0\)

\(\Leftrightarrow77x-462=0\)

\(\Leftrightarrow77x=462\)

\(\Leftrightarrow x=6\)

Vậy:x=6

Bài 3:

a) \(\left(5x-4\right)\left(4x+6\right)=0\)

\(\Leftrightarrow\left(5x-4\right)\cdot2\cdot\left(2x+3\right)=0\)

\(2\ne0\)

nên \(\left[{}\begin{matrix}5x-4=0\\2x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}5x=4\\2x=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{4}{5}\\x=\frac{-3}{2}\end{matrix}\right.\)

Vậy: \(x\in\left\{\frac{4}{5};-\frac{3}{2}\right\}\)

b) \(\left(x-5\right)\left(3-2x\right)\left(3x+4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-5=0\\3-2x=0\\3x+4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\2x=3\\3x=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=\frac{3}{2}\\x=\frac{-4}{3}\end{matrix}\right.\)

Vậy: \(x\in\left\{5;\frac{3}{2};\frac{-4}{3}\right\}\)

c) \(\left(2x+1\right)\left(x^2+2\right)=0\)

Ta có: \(\left(2x+1\right)\left(x^2+2\right)=0\)(1)

Ta có: \(x^2\ge0\forall x\)

\(\Rightarrow x^2+2\ge2\ne0\forall x\)(2)

Từ (1) và (2) suy ra:

\(2x+1=0\)

\(\Leftrightarrow2x=-1\)

\(\Leftrightarrow x=\frac{-1}{2}\)

Vậy: \(x=\frac{-1}{2}\)

d) \(\left(8x-4\right)\left(x^2+2x+2\right)=0\)

\(\Leftrightarrow4\left(2x-1\right)\left(x^2+2x+2\right)=0\)

Ta có: \(x^2+2x+2=x^2+2x+1+1=\left(x+1\right)^2+1\)

Ta lại có \(\left(x+1\right)^2\ge0\forall x\)

\(\Rightarrow\left(x+1\right)^2+1\ge1\ne0\forall x\)(3)

Ta có: \(4\ne0\)(4)

Từ (3) và (4) suy ra

2x-1=0

\(\Leftrightarrow2x=1\)

\(\Leftrightarrow x=\frac{1}{2}\)

Vậy: \(x=\frac{1}{2}\)

Bài 4:

a) \(\left(x-2\right)\left(2x+3\right)=\left(x-1\right)\left(x-2\right)\)

\(\Leftrightarrow2x^2+3x-4x-6=x^2-2x-x+2\)

\(\Leftrightarrow2x^2-x-6=x^2-3x+2\)

\(\Leftrightarrow2x^2-x-6-x^2+3x-2=0\)

\(\Leftrightarrow x^2+2x-8=0\)

\(\Leftrightarrow x^2+2x+1-9=0\)

\(\Leftrightarrow\left(x+1\right)^2-3^2=0\)

\(\Leftrightarrow\left(x+1-3\right)\left(x+1+3\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x+4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-4\end{matrix}\right.\)

Vậy: \(x\in\left\{2;-4\right\}\)

b) \(\left(2x+5\right)\left(x-4\right)=\left(x-5\right)\left(4-x\right)\)

\(\Leftrightarrow\left(2x+5\right)\left(x-4\right)-\left(x-5\right)\left(4-x\right)=0\)

\(\Leftrightarrow\left(2x+5\right)\left(x-4\right)+\left(x-5\right)\left(x-4\right)=0\)

\(\Leftrightarrow\left(x-4\right)\left(2x+5+x-5\right)=0\)

\(\Leftrightarrow\left(x-4\right)\cdot3x=0\)

\(3\ne0\)

nên \(\left[{}\begin{matrix}x=0\\x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=4\end{matrix}\right.\)

Vậy: \(x\in\left\{0;4\right\}\)

c) \(9x^2-1=\left(3x+1\right)\left(2x-3\right)\)

\(\Leftrightarrow\left(3x-1\right)\left(3x+1\right)-\left(3x+1\right)\left(2x-3\right)=0\)

\(\Leftrightarrow\left(3x+1\right)\left[\left(3x-1\right)-\left(2x-3\right)\right]=0\)

\(\Leftrightarrow\left(3x+1\right)\left(3x-1-2x+3\right)=0\)

\(\Leftrightarrow\left(3x+1\right)\left(x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}3x+1=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}3x=-1\\x=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{-1}{3}\\x=-2\end{matrix}\right.\)

Vậy: \(x\in\left\{-\frac{1}{3};-2\right\}\)

d) \(\left(x+2\right)^2=9\left(x^2-4x+4\right)\)

\(\Leftrightarrow x^2+4x+4-9\left(x^2-4x+4\right)=0\)

\(\Leftrightarrow x^2+4x+4-9x^2+36x-36=0\)

\(\Leftrightarrow-8x^2+40x-32=0\)

\(\Leftrightarrow-\left(8x^2-40x+32\right)=0\)

\(\Leftrightarrow-8\left(x^2-5x+4\right)=0\)

\(-8\ne0\)

nên \(x^2-5x+4=0\)

\(\Leftrightarrow x^2-x-4x+4=0\)

\(\Leftrightarrow x\left(x-1\right)-4\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=4\end{matrix}\right.\)

Vậy: \(x\in\left\{1;4\right\}\)

e) \(4\left(2x+7\right)^2-9\left(x+3\right)^2=0\)

\(\Leftrightarrow4\left(4x^2+28x+49\right)-9\left(x^2+6x+9\right)=0\)

\(\Leftrightarrow16x^2+112x+196-9x^2-54x-81=0\)

\(\Leftrightarrow7x^2+58x+115=0\)

\(\Leftrightarrow7x^2+23x+35x+115=0\)

\(\Leftrightarrow x\left(7x+23\right)+5\left(7x+23\right)=0\)

\(\Leftrightarrow\left(7x+23\right)\left(x+5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}7x+23=0\\x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}7x=-23\\x=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{-23}{7}\\x=-5\end{matrix}\right.\)

Vậy: \(x\in\left\{\frac{-23}{7};-5\right\}\)

Bài 5:

a) \(\left(9x^2-4\right)\left(x+1\right)=\left(3x+2\right)\left(x^2-1\right)\)

\(\Leftrightarrow\left(9x^2-4\right)\left(x+1\right)-\left(3x+2\right)\left(x^2-1\right)=0\)

\(\Leftrightarrow\left(3x-2\right)\left(3x+2\right)\left(x+1\right)-\left(3x+2\right)\left(x+1\right)\left(x-1\right)=0\)

\(\Leftrightarrow\left(3x+2\right)\left(x+1\right)\left[\left(3x-2\right)-\left(x-1\right)\right]=0\)

\(\Leftrightarrow\left(3x+2\right)\left(x+1\right)\left(3x-2-x+1\right)=0\)

\(\Leftrightarrow\left(3x+2\right)\left(x+1\right)\left(2x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}3x+2=0\\x+1=0\\2x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}3x=-2\\x=-1\\2x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{-2}{3}\\x=-1\\x=\frac{1}{2}\end{matrix}\right.\)

Vậy: \(x\in\left\{-\frac{2}{3};-1;\frac{1}{2}\right\}\)

b) \(\left(x-1\right)^2-1+x^2=\left(1-x\right)\left(x+3\right)\)

\(\Leftrightarrow x^2-2x+1-1+x^2=x+3-x^2-3x\)

\(\Leftrightarrow2x^2-2x=-x^2-2x+3\)

\(\Leftrightarrow2x^2-2x+x^2+2x-3=0\)

\(\Leftrightarrow3x^2-3=0\)

\(\Leftrightarrow3\left(x^2-1\right)=0\)

\(\Leftrightarrow3\left(x-1\right)\left(x+1\right)=0\)

\(3\ne0\)

nên \(\left[{}\begin{matrix}x-1=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)

Vậy: \(x\in\left\{1;-1\right\}\)

c) \(x^4+x^3+x+1=0\)

\(\Leftrightarrow x^3\left(x+1\right)+\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(x^3+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(x+1\right)\left(x^2-x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)^2\cdot\left(x^2-x+1\right)=0\)(5)

Ta có: \(x^2-x+1=x^2-2\cdot x\cdot\frac{1}{2}+\frac{1}{4}-\frac{1}{4}+1=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\)

Ta lại có: \(\left(x-\frac{1}{2}\right)^2\ge0\forall x\)

\(\Rightarrow\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\ne0\forall x\)(6)

Từ (5) và (6) suy ra

\(\left(x+1\right)^2=0\)

\(\Leftrightarrow x+1=0\)

\(\Leftrightarrow x=-1\)

Vậy: x=-1

18 tháng 2 2020

ko khó đâu, chủ yếu nhát làm