K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 10 2021

a: 

x-∞\(\dfrac{3}{2}\)+∞
y+∞\(-\dfrac{1}{4}\)+∞

 

AH
Akai Haruma
Giáo viên
11 tháng 7 2023

Lời giải:
a.

\(\left\{\begin{matrix} x\neq 0\\ 2x-1\geq 0\\ x^2-3x+2=(x-1)(x-2)\neq 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\neq 0\\ x\geq \frac{1}{2}\\ x\neq 1; x\neq 2\end{matrix}\right.\)

$\Leftrightarrow x\geq \frac{1}{2}; x\neq 1; x\neq 2$
b. \(\left\{\begin{matrix} x^2-1=(x-1)(x+1)\neq 0\\ 7-2x\geq 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\neq \pm 1\\ x\leq \frac{7}{2}\end{matrix}\right.\)

c.

\(\left\{\begin{matrix} x\neq 0\\ 4-2x+x^2\neq 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\neq 0\\ (x-1)^2+3\neq 0\end{matrix}\right.\Leftrightarrow x\neq 0\)

d.

\(\left\{\begin{matrix} 25-x^2=(5-x)(5+x)\geq 0\\ x\geq 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} -5\leq x\leq 5\\ x\geq 0\end{matrix}\right.\Leftrightarrow 0\leq x\leq 5\)

 

11 tháng 7 2023

a) \(y=\dfrac{1}{x}-\dfrac{\sqrt[]{2x-1}}{x^2-3x+2}\)

Điều kiện \(\) \(2x-1\ge0;x\ne0;x^2-3x+2\ne0\)

\(\Leftrightarrow x\ge\dfrac{1}{2};x\ne0;\left(x-1\right)\left(x-2\right)\ne0\)

\(\Leftrightarrow x\ge\dfrac{1}{2};x\ne0;x\ne1;x\ne2\)

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

Hàm số ở câu a) \(y = 9{x^2} + 5x + 4\) là hàm số bậc hai với \(a = 9,b = 5,c = 4\)

Hàm số ở câu b), c) không phải là hàm số bậc hai vì chứa \({x^3}\)

Hàm số ở câu d) \(y = 5{x^2} + \sqrt x  + 2\) không phải là hàm số bậc hai vì chứa \(\sqrt x \)

HQ
Hà Quang Minh
Giáo viên
30 tháng 9 2023

a) Đồ thị \(y = {x^2} - 3x + 2\)

- Có đỉnh là điểm \(I\left( {\frac{3}{2}; - \frac{1}{4}} \right)\), có trục đối xứng là đường thẳng \(x = \frac{3}{2}\)

- \(a = 1 > 0\), quay bề lõm lên trên

- Đi qua điểm (0;2);(1;0)

b) Đồ thị \(y =  - 2{x^2} + 2x + 3\)

- Có đỉnh là điểm \(I\left( {\frac{1}{2};\frac{7}{2}} \right)\), có trục đối xứng là đường thẳng \(x = \frac{1}{2}\)

- \(a =  - 2 < 0\), quay bề lõm xuống dưới

- Đi qua điểm (0;3);(1;3)

c) Đồ thị\(y = {x^2} + 2x + 1\)

- Có đỉnh là điểm \(I( - 1;0)\), có trục đối xứng là đường thẳng \(x =  - 1\)

- \(a = 1 > 0\), quay bề lõm lên trên

- Đi qua điểm (0;1); (1;4)

d) Đồ thị \(y =  - {x^2} + x - 1\)

- Có đỉnh là điểm \(I\left( {\frac{1}{2};\frac{{ - 3}}{4}} \right)\), có trục đối xứng là đường thẳng \(x = \frac{1}{2}\)

- \(a =  - 1 < 0\), quay bề lõm xuống dưới

- Đi qua điểm (0;-1); (1;-1)

21 tháng 8 2020

https://vungoi.vn/cau-hoi-39983

21 tháng 8 2020

Ta có TXĐ:D=R

⇒∀x∈D⇒−x∈D

Đồ thị hàm số đã cho nhận gốc tọa độ O làm tâm đối xứng khi và chỉ khi nó là hàm số lẻ

⇔f(−x)=−f(x),∀x∈R

\(\text{⇔(−x)^3−(m^2−9)(−x)^2+(m+3)(−x)+m−3}\)

\(\text{=-[x^3−(m^2−9)x^2+(m+3)x+m−3]}\)

\(=\text{⇔2(m^2−9)x^2−2(m−3)=0}\)

\(\Rightarrow\forall\inℝ\) ; 

\(\hept{\begin{cases}m^2-9=0\\m-3=0\end{cases}}\) 

\(\hept{\begin{cases}m=\pm3\\m=3\end{cases}}\)  

\(\Rightarrow m=3\)