Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số dãy ghế ban đầu trong phòng là x(dãy)(ĐK: x>4)
Số dãy ghế lúc sau là x+1(dãy)
Số người ngồi trên 1 dãy ghế lúc đầu là \(\dfrac{320}{x}\left(người\right)\)
Số người ngồi trên 1 dãy ghế lúc sau là \(\dfrac{420}{x+1}\left(người\right)\)
Theo đề, ta có: \(\dfrac{420}{x+1}-\dfrac{320}{x}=4\)
=>\(\dfrac{420x-320x-320}{x\left(x+1\right)}=4\)
=>4x(x+1)=100x-320
=>x(x+1)=25x-80
=>x^2+x-25x+80=0
=>x^2-24x+80=0
=>(x-4)(x-20)=0
=>\(\left[{}\begin{matrix}x=4\left(loại\right)\\x=20\left(loại\right)\end{matrix}\right.\)
Vậy: ban đầu có 20 dãy ghế
Gọi số dãy ghế ban đầu là x,
số ghế trong mỗi dãy ban đầu là y (x, y ∈ N*)
Ta có: x.y=320 ⇒ y=\(\dfrac{320}{x}\)
Nhưng vì số người hôm đó tới dự là 420 người do đó phải đặt thêm 1 dãy ghế và thu xếp để mỗi dãy ghế được thêm 4 người ngồi mới đủ nên ta có:
( x+1).( y+4)=420
⇔ ( x+1).( \(\dfrac{320}{x}\)x +4)= 420
⇔ 320+4x+\(\dfrac{320}{x}\) +4=420
⇒ 320x+4x²+320+4x=420x
⇔ 4x²-96x+320=0
⇔ x=20 hoặc x=4
Nếu x=20 thì y=16
Nếu x=4 thì y=80
Vậy trong phòng lúc đầu có 20 dãy ghế, mỗi dãy có 16 ghế
hoặc 4 dãy ghế, mỗi dãy có 80 ghế.
gọi x và y lần lượt là số dãy ghs và số ghế trong một dãy
Do đó x,y là hai số tự nhiên khác 0
ta có hệ sau
\(\hept{\begin{cases}x.y=320\\\left(x+1\right)\left(y+4\right)=420\end{cases}\Leftrightarrow}\hept{\begin{cases}x.y=320\\xy+4x+y+4=420\end{cases}\Leftrightarrow\hept{\begin{cases}x.y=320\\4x+y=96\end{cases}}}\)
Rút \(y=96-4x\Rightarrow96x-4x^2=320\Leftrightarrow\orbr{\begin{cases}x=20\Rightarrow y=16\\x=4\Rightarrow y=40\end{cases}}\)
Vậy có hai khả năng xảy ra như trên
mỗi hàng ghế có số ghế là x
có số hàng ghế là \(\frac{300}{x}\)
lúc sau mỗi hàng có số ghế là x+2
có số hàng ghế là \(\frac{300}{x}+1\)ta có pt:
\(\frac{300}{x}+1=\frac{357}{x+2}\)
\(300x+600+x^2+2x=357x\)
\(x^2-55x+600=0\)
\(\Delta= \left(-55\right)^2-\left(4.1.600\right)=625\)
\(\sqrt{\Delta}=25\)
\(x_1=\frac{55+25}{2}=35\left(KTM\right)\)
\(x_2=\frac{55-25}{2}=15\left(TM\right)\)
có số hàng ghế \(\frac{300}{15}=20\)( Hàng ghế )
gọi x là số hàng ghế ban đầu
y là số ghế 1 hàng ban đầu, đk: x>0, y là số nguyên dương
x.y=300
(x+1).(y+2)=357
x.y+2x+y+2=357
300+2x+y+2=357
2x+y=55
y=55-2x thay vào pt x.y=300
x.(55-2x)=300
55x-2x2=300
x=20 hay x=7.5
y=15 hay y=40
gọi x là số hàng ghế ban đầu
y là số ghế 1 hàng ban đầu, đk: x>0, y là số nguyên dương
x.y=300
(x+1).(y+2)=357
x.y+2x+y+2=357
300+2x+y+2=357
2x+y=55
y=55-2x thay vào pt x.y=300
x.(55-2x)=300
55x-2x2=300
x=20 hay x=7.5
y=15 hay y=40
Gọi số dãy là x, số người ngồi trong mỗi dãy là y dk:...
Theo bài ra ra có xy =70 (1)
Nếu ta bớt đi 2 dãy ghế thì mỗi dãy ghế còn lại phải xếp thêm 4 người ngồi mới đủ chỗ
=> (x-2)(y+4) = 70 (2)
Từ (1) và (2) ta có hệ phương trình...................
Giải ra được x = 7 ; y = 10
Gọi số ghế ở mỗi hàng ban đầu là x (ghế, x > 0)
Gọi số hàng ghế trong phòng ban đầu là y (hàng, y < 50)
Ta có x nhân y = 240
Khi tăng số ghế và số hàng ta có (x + 1)(y + 3)= 315
Ta có hệ phương trình {x nhân y= 240
{y + 3x = 72
Giải hệ phương trình ta có y= 12; x= 20
Vậy số dãy ghế có trong phòng lúc đầu là 12 hàng.
Gọi số dãy ghế có trong phòng họp lúc đầu là x (x<50)
Lúc đầu mỗi dãy có \(\frac{240}{x}\)ghế
Vì lúc sau có 315 người tham dự nên phải kê thêm 3 dãy, mỗi dãy thêm 1 ghế
=> \(\left(\frac{240}{x}+1\right)\left(x+3\right)=315\Leftrightarrow240+\frac{720}{x}+x+3=315\)
\(\Leftrightarrow x-72+\frac{720}{x}=0\Leftrightarrow\frac{x^2-72x+720}{x}=0\Leftrightarrow x^2-72x+720=0\)
\(\Delta'=\left(-36\right)^2-720=576\)
=> x1= 60 (Loại), x2=12 (thỏa mãn)
Vậy trong phòng họp lúc đầu có 12 dãy ghế.
Gọi số chỗ ngồi ban đầu ở mỗi dãy là x
Theo đề, ta có: 80/x+2=80/x-2
=>80/(x+2)-80/x=-2
=>\(\dfrac{80x-80x-160}{x\left(x+2\right)}=-2\)
=>x^2+2x-80=0
=>x=8
Bài 1:
Gọi số ghế trong phòng họp là x (cái)
số người dự họp là y (người) (x,y ∈ N*)
Vì nếu xếp mỗi ghế 5 người thì có 9 người không có chỗ ngồi
\(\Rightarrow5x-y=-9\left(1\right)\)
Vì nếu xếp ghế 6 người thì thừa 1 ghế
\(\Rightarrow6x-y=1\left(2\right)\)
Từ (1) và (2) ta có hệ phương trình: \(\left\{{}\begin{matrix}5x-y=-9\\6x-y=1\end{matrix}\right.\)
Giải hệ ta được: \(\left\{{}\begin{matrix}x=10\\y=59\end{matrix}\right.\left(t/m\right)\)
Vậy trong phòng họp có 10 cái ghế và 59 người dự họp
Bài 2:
Gọi x là số dãy ghế, y là số chỗ ngồi (x, y > 0)
Theo bài ra ta có hệ phương trình : \(\left\{{}\begin{matrix}\left(x+1\right)\left(y+4\right)=420\\xy=320\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}xy+4x+y+4=420\\xy=320\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}4x+y=96\\xy=320\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=20\\y=16\end{matrix}\right.\)
Vậy ..