\(\left(1-\frac{1000}{2017}\right).\left(1-\frac{1001}{2017}\right)....\left(1-\fr...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 7 2018

a, \(M=\frac{3}{2}\cdot\frac{4}{3}\cdot\cdot\cdot\cdot\frac{2018}{2017}\cdot\frac{2019}{2018}=\frac{3.4...2019}{2.3...2018}=\frac{2019}{2}\)

b, c cùng 1 câu phải k

ta có: \(A=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2017}-\frac{1}{2018}\)

\(=\left(1+\frac{1}{3}+...+\frac{1}{2017}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2018}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2018}\right)-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2018}\right)\)

\(=1+\frac{1}{2}+...+\frac{1}{2018}-\left(1+\frac{1}{2}+...+\frac{1}{1009}\right)\)

\(=\frac{1}{1010}+\frac{1}{1011}+...+\frac{1}{2018}=B\)

\(\Rightarrow\frac{A}{B}=1\Rightarrow\left(\frac{A}{B}\right)^{2018}=1^{2018}=1\)

15 tháng 7 2018

A,\(M=\frac{3}{2}\cdot\frac{4}{3}....\frac{2018}{2017}\cdot\frac{2019}{2018}=\frac{4\cdot3...2019}{2\cdot3...2018}=\frac{2019}{2}\)

NHA

HỌC TỐT

25 tháng 1 2020

Ta có : \(2018.\left(\frac{1}{2017}-\frac{2019}{1009}\right)-2019.\left(\frac{1}{2017}-2\right)=\frac{2018}{2017}-2019.2-\frac{2019}{2017}+2019.2\)

\(=\frac{2018}{2017}-\frac{2019}{2017}=-\frac{1}{2017}\)

25 tháng 1 2020

\(2018.\left(\frac{1}{2017}-\frac{2019}{1009}\right)-2019.\left(\frac{1}{2017}-2\right)\)

\(=\frac{2018}{2017}-2018.\frac{2019}{1009}-\frac{2019}{2017}+2019.2\)

\(=\frac{2018}{2017}-2.2019-\frac{2019}{2017}+2.2019\)

\(=\frac{2018}{2017}-\frac{2019}{2017}=-\frac{1}{2017}\)

30 tháng 3 2019

\(2018\cdot\left(\frac{1}{2017}-\frac{2019}{1009}\right)-2019\cdot\left(\frac{1}{2017}-2\right)=\frac{2018}{2017}-4038-\frac{2019}{2017}+4038\)

\(=\frac{2018}{2017}-\frac{2019}{2017}=-\frac{1}{2017}\)

15 tháng 12 2018

\(P=\left(\frac{1}{2}-1\right)\left(\frac{1}{3}-1\right).....\left(\frac{1}{2017}-1\right)\left(\frac{1}{2018}-1\right)\)

\(P=\left(\frac{-1}{2}\right)\left(\frac{-2}{3}\right)\left(\frac{-3}{4}\right).....\left(\frac{-2016}{2017}\right)\left(\frac{-2017}{2018}\right)\)

\(P=\frac{\left(-1\right)\left(-2\right)\left(-3\right)\left(-4\right)....\left(-2017\right)}{2.3.4......2017.2018}\)

\(P=\frac{\left(-1\right)\left[\left(-2\right)\left(-3\right)\right]\left[\left(-4\right)\left(-5\right)\right]...\left[\left(-2016\right)\left(-2017\right)\right]}{\left[2.3\right]\left[4.5\right]....\left[2016.2017\right].2018}\)

\(P=\frac{\left(-1\right)\left[2.3\right]\left[4.5\right]....\left[2016.2017\right]}{\left[2.3\right]\left[4.5\right].....\left[2016.2017\right].2018}=\frac{-1}{2018}\)

19 tháng 3 2019

Đề thi đó