Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
=( 1/12+9/12+2/12+1/12) + ( 2/7+5/7) + (10/20+9/20)
= 13/12 +1+19/20
đến đây bạn tự tính nha
$\frac{4}{6} = \frac{{4:2}}{{6:2}} = \frac{2}{3}$ ; $\frac{8}{{12}} = \frac{{8:4}}{{12:4}} = \frac{2}{3}$
$\frac{{10}}{{15}} = \frac{{10:5}}{{15:5}} = \frac{2}{3}$ ; $\frac{{14}}{{21}} = \frac{{14:7}}{{21:7}} = \frac{2}{3}$
Vậy các phân số đã cho bằng nhau.
\(\dfrac{4}{6}=\dfrac{4:2}{6:2}=\dfrac{2}{3};\dfrac{8}{12}=\dfrac{8:4}{12:4}=\dfrac{2}{3}\)
\(\dfrac{10}{15}=\dfrac{10:5}{15:5}=\dfrac{2}{3};\dfrac{14}{21}=\dfrac{14:7}{21:7}=\dfrac{2}{3}\)
Do đó: \(\dfrac{4}{6}=\dfrac{8}{12}=\dfrac{10}{15}=\dfrac{14}{21}\)
a) $\frac{4}{{25}}:\frac{4}{3} = \frac{4}{{25}} \times \frac{3}{4} = \frac{3}{{25}}$
b) $\frac{3}{{14}}:\frac{6}{7} = \frac{3}{{14}} \times \frac{7}{6} = \frac{{3 \times 7}}{{14 \times 6}} = \frac{{3 \times 7}}{{7 \times 2 \times 3 \times 2}} = \frac{1}{4}$
c) $\frac{{12}}{{15}}:2 = \frac{{12}}{{15}} \times \frac{1}{2} = \frac{{12 \times 1}}{{15 \times 2}} = \frac{{6 \times 2 \times 1}}{{15 \times 2}} = \frac{6}{{15}}$
d) $\frac{{21}}{8}:6 = \frac{{21}}{8} \times \frac{1}{6} = \frac{{21 \times 1}}{{8 \times 6}} = \frac{{7 \times 3 \times 1}}{{8 \times 3 \times 2}} = \frac{7}{{16}}$
\(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{56}=\frac{1}{2x3}+\frac{1}{3x4}+\frac{1}{4x5}...\frac{1}{7x8}=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{7}-\frac{1}{8}\)\(-\frac{1}{8}=\frac{1}{2}-\frac{1}{8}=\frac{3}{8}\)
b,
\(\dfrac{18}{3}=18:3=6\)
\(\dfrac{45}{9}=45:9=5\)
\(\dfrac{8}{8}=8:8=1\)
\(\dfrac{7}{1}=7:1=7\)
\(\left(2.8x-32\right):\frac{2}{3}=90\)
\(2.8\cdot x-32=90\cdot\frac{2}{3}\)
\(\frac{14}{5}x-32=60\)
\(\frac{14}{5}x=60+32\)
\(\frac{14}{5}x=92\)
\(x=\frac{230}{7}\)
B , c , d tương tự
Bài 1 :
12/19 + 4 = 88/19
1234 + 9800 - 9700 = 1334
Bài 2:
10/32 < 9/8
21/14 > 20/12
1)
a)\(\frac{12}{19}\)+4=\(\frac{12}{19}\)+ \(\frac{76}{19}\)=\(\frac{88}{19}\) 1234+9800-9700
=1234+100=1334
2)\(\frac{10}{32}\)<\(\frac{9}{8}\) \(\frac{21}{14}\)<\(\frac{20}{12}\)