K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 12 2017

2. A=3+32+33+...........+3150

A=(3+32)+(33+34)+......+(3149+3150)

A=3(1+3)+33(1+3)+............+3149(1+3)

A=(1+3).(3+33+........+3149)

A=4.(3+33+.........+3149)⋮4

=>A⋮4

18 tháng 12 2017

A học lớp 9 mà hỏi chi

19 tháng 12 2017

( x - 2 ) . ( 2y + 1 ) = 9

=> x - 2 , 2y + 1 thuộc Ư ( 9 ) = { 1 , 3 , 9 }

Lập bảng giá trị tương ứng x , y :

x - 2139
x3511
2y + 1931
y410

Vậy ( x , y ) = ( 3,4 ) ; ( 5 , 1 ) ; ( 11 , 0 ) 

QT
Quoc Tran Anh Le
Giáo viên
19 tháng 12 2017

(x - 2) . (2y + 1) = 9

Ta có: 9 = 3.3 = 1.9 = 9.1 = -1.-9 = -9.-1 = -3.-3

Ta có bảng sau:

x-2 3 1 9 -3 -1 -9
2y+1 3 9 1 -3 -9 -1
x 5 3 11 -1 1 -7
y 1 4 0 -2 -5 -1

Vậy các cặp x,y thỏa mãn là: (x;y) = (5;1) ; (3;4) ; (11;0) ; (-1;-2) ; (1;-5) ; (-7;-1)

5 tháng 8 2017

mình biết mỗi bài 4:

A={2007}

mình đi xin bn đó

6 tháng 8 2017

cảm ơn bạn Xử Nữ các bạn khác giúp mình với

25 tháng 1 2017

Bài 1:

A = 32 + 33 + 34 + ... + 32018

3A = 33 + 34 + 35 + ... + 32019

3A - A = (33 + 34 + 35 + ... + 32019) - (32 + 33 + 34 + ... + 32018)

2A = 32019 - 9

A = (32019 - 9) : 2

= (32016.33 - 9) : 2

= [ (34)504.27 - 9] : 2

= [ (...1)504.27 - 9] : 2

= [ (...1).27 - 9] : 2

= [ (...7) - 9] : 2

= (....8) : 2

= ...4

Vậy c/s tận cùng của A là 4

Bài 2:

Ta có:

1019 + 1018 + 1017

= 1016.103 + 1016.102 + 1016.10

= 1016.(103 + 102 + 10)

= 1016.1110

= 1016.2.555

Vì 555 chia hết cho 555 nên 1016.2.555 chia hết cho 555

Vậy 1019 + 1018 + 1017 chia hết cho 555 (đpcm)

Bài 3:

x + 6 chia hết cho x + 2

=> x + 2 + 4 chia hết cho x + 2

=> 4 chia hết cho x + 2

=> x + 2 thuộc Ư(4) = {\(\pm1;\pm2;\pm4\)}

x + 2 1 -1 2 -2 4 -4
x -1 -3 0 -4 2 -6

Vậy x = {-1;-3;0;-4;2;-6}

Bài 4:

Giả sử x + 4y chia hết cho 7 (1)

Vì 3x + 5y chia hết cho 7 nên 2(3x + 5y) chia hết cho 7

=> 6x + 10y chia hết cho 7 (2)

Từ (1) và (2) => (x + 4y) + (6x + 10y) chia hết cho 7

=> x + 4y + 6x + 10y chia hết cho 7

=> (x + 6x) + (4y + 10y) chia hết cho 7

=> 7x + 14y chia hết cho 7

=> 7(x + 2y) chia hết cho 7

=> Giả sử đúng

Vậy x + 4y chia hết cho 7 (đpcm)

Bài 5:

1, Ta có: \(-\left(x+2\right)^{2018}\le0\)

\(\Rightarrow-1-\left(x+2\right)^{2018}\le0\)

\(\Rightarrow A\le0\)

Dấu " = " xảy ra <=> (x + 2)2018 = 0 <=> x = -2

Vậy GTNN của A là -1 khi x = -2

2, Ta có: \(x^2\ge0\)

\(\left|2y-18\right|\ge0\)

\(\Rightarrow x^2+\left|2y-18\right|\ge0\)

\(\Rightarrow-9+x^2+\left|2y-18\right|\ge-9\)

Dấu " = " xảy ra <=> \(\left\{\begin{matrix}x^2=0\\\left|2y-18\right|=0\end{matrix}\right.\Leftrightarrow\left\{\begin{matrix}x=0\\y=9\end{matrix}\right.\)

Vậy GTLN của B là -9 khi \(\left\{\begin{matrix}x=0\\y=9\end{matrix}\right.\)

Bài 6:

1, xy + 2x - y - 2 = 5

<=> x(y + 2) - (y + 2) = 5

<=> (x - 1)(y + 2) = 5

=> x - 1 và y + 2 thuộc Ư(5) = {\(\pm1;\pm5\)}

Ta có bảng:

x - 1 1 -1 5 -5
y + 2 5 -5 1 -1
x 2 0 6 -4
y 3 -7 -1 -3

Vậy các cặp (x;y) là (2;3) ; (0;-7) ; (6;-1) ; (-4;-3)

2, x + y = 2xy

<=> 2xy - x - y = 0

<=> 2(2xy - x - y) = 2.0

<=> 4xy - 2x - 2y = 0

<=> (4xy - 2x) - 2y - 1 = 0 - 1

<=> 2x(2y - 1) - (1 - 2y) = -1

<=> (2x - 1)(1 - 2y) = -1

=> 2x - 1 và 1 - 2y thuộc Ư(-1) = {\(\pm1\)}

Ta có bảng:

2x - 1 1 -1
1 - 2y -1 1
x 1 0
y 1 0
25 tháng 1 2017

Vậy các cặp (x;y) là (1;1) ; (0;0)

12 tháng 2 2016

nhiều quá bạn ơi duyệt đi

21 tháng 1 2017

?????????????????????????????

21 tháng 1 2017

Xin lỗi nha. Mk mún giúp lắm nhưng mk mới học lp 5 thui nên đọc đề ko hỉu gì hết đó.

29 tháng 1 2018

a, Ta có x-4 \(⋮\)x+1

\(\Rightarrow\left(x+1\right)-5⋮x+1\)

\(\Rightarrow x+1\inƯ\left(5\right)=\left\{-1;-5;1;5\right\}\)

Ta có bảng giá trị

x+1-1-515
x-2-604

Vậy x={-2;-6;0;4}
 

26 tháng 4 2021

b.2x +5=2x-2+7=2(x-1)+7

=> 7 chiahetcho x-1

tu lam

c.4x+1 = 4x+4+(-3)=2(2x+2)-3

tu lAM

d.x^2-2x+3=x^2-2x+1+2=(x+1)^2+2

tu lam

e.x(x+3)+9=>

tu lam

6 tháng 6 2016

Hai bài toán rất hay và lạ! Xin cảm ơn bạn Tuấn Minh.

Và mình không hiểu người post cái bài dài dài kia (bạn Thành - sau mà đổi tên là không biết tên gì nốt) nói gì luôn. @@@.

1./ Tìm các số nguyên dương x;y;z sao cho: \(\hept{\begin{cases}x+3=2^y\left(1\right)\\3x+1=4^z\left(2\right)\end{cases}}\)

  • Ta thấy y=0; 1 không phải là nghiệm của bài toán.
  • Với y =2 thì x=1; z=1 là 1 nghiệm của bài toán.
  • Với y>=3 thì:
  • Từ (2) suy ra: \(3x=4^z-1=\left(4-1\right)\left(4^{z-1}+4^{z-2}+...+4^2+4+1\right)\)

\(\Leftrightarrow x=4^{z-1}+4^{z-2}+...+4^2+4+1\)

  • Thay vào (1) ta có:  \(\left(1\right)\Leftrightarrow4^{z-1}+4^{z-2}+...+4^2+4+1+3=2^y\)

\(\Leftrightarrow4^{z-1}+4^{z-2}+...+4^2+4+4=2^y\)

\(\Leftrightarrow8\cdot2\cdot4^{z-3}+8\cdot2\cdot4^{z-4}+...+8\cdot2\cdot4+8\cdot2+8=2^y\)

\(\Leftrightarrow8\cdot\left(2\cdot4^{z-3}+2\cdot4^{z-4}+...+2\cdot4+2+1\right)=8\cdot2^{y-3}\)

\(\Leftrightarrow\left(2\cdot4^{z-3}+2\cdot4^{z-4}+...+2\cdot4+2+1\right)=2^{y-3}\)

Ta thấy vế trái lẻ nên đạt được dấu bằng chỉ khi y=3; khi đó x=5 và z=2.

  • Vậy bài toán có 2 bộ nghiệm nguyên là: \(\hept{\begin{cases}x=1;y=2;z=1\\x=5;y=3;z=2\end{cases}}\)
5 tháng 6 2016

câu 1:

y=z=vô nghiệm