Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2:
a: Gọi d=ƯCLN(4n+7;2n+3)
=>\(\left\{{}\begin{matrix}4n+7⋮d\\2n+3⋮d\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4n+7⋮d\\4n+6⋮d\end{matrix}\right.\Leftrightarrow1⋮d\)
=>d=1
=>ƯCLN(4n+7;2n+3)=1
b: Gọi \(d=ƯCLN\left(3n+5;6n+9\right)\)
=>\(\left\{{}\begin{matrix}3n+5⋮d\\6n+9⋮d\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}6n+10⋮d\\6n+9⋮d\end{matrix}\right.\)
=>\(1⋮d\)
=>d=1
=>Đây là phân số tối giản
a: 450 chia hết cho x
396 chia hết cho x
=>\(x\inƯC\left(450;396\right)\)
=>\(x\inƯ\left(18\right)\)(Vì ƯCLN(450;396)=18)
mà x>12
nên x=18
b: 285+x chia hết cho x
=>285 chia hết cho x(1)
306-x chia hết cho x
=>306 chia hết cho x(2)
Từ (1), (2) suy ra \(x\inƯC\left(285;306\right)\)
=>\(x\inƯ\left(3\right)\)
mà x>=3
nên x=3
c: x chia 8;12;16 đều dư 1
=>x-1 chia hết cho 8;12;16
=>\(x-1\in B\left(48\right)\)
mà 40<x<100
nên x-1=48 hoặc x-1=96
=>x=49 hoặc x=97
Bài làm
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
Bài 2 :
Ta có : n - 6 chia hết n - 1
=> n - 1 - 5 chia hết cho n - 1
=> 5 chia hết cho n - 1
=> n - 1 thuộc Ư(5) = {-1;1-5;5}
Ta có bảng
n - 1 | -5 | -1 | 1 | 5 |
n | -4 | 0 | 2 | 6 |
xy-3x+2y-6=x+9
xy-3y+2y-x=6+9
xy-y-x=15