Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Để \(\frac{x+y\sqrt{2017}}{y+z\sqrt{2017}}\in\mathbb{Q}\Rightarrow \exists a,b\in\mathbb{N}^*, (a,b)=1\) sao cho :
\(\frac{x+y\sqrt{2017}}{y+z\sqrt{2017}}=\frac{a}{b}\Leftrightarrow bx+by\sqrt{2017}=ay+az\sqrt{2017}\)
\(\Leftrightarrow (bx-ay)=\sqrt{2017}(az-by)\)
Vì \(a,b,x,y\in\mathbb{N}^*; \sqrt{2017}\not\in\mathbb{Q}\rightarrow \) để đẳng thức trên xảy ra thì:
\(bx-ay=az-by=0\)
\(\Leftrightarrow \left\{\begin{matrix} \frac{a}{b}=\frac{x}{y}\\ \frac{a}{b}=\frac{y}{z}\end{matrix}\right.\Rightarrow \frac{x}{y}=\frac{y}{z}\)
\(\Rightarrow y^2=xz\)
a) Gọi d là ước chung lớn nhất của x và z. Khi đó đặt:
\(\left\{\begin{matrix} x=x_1d\\ z=z_1d\end{matrix}\right.(x_1,z_1\in\mathbb{N}^*; (x_1,z_1)=1)\)
\(\Rightarrow x^2+y^2+z^2=x_1^2d^2+d^2x_1z_1+z_1^2d^2\)
\(=d^2(x_1^2+x_1z_1+z_1^2)\)
Vì \(x_1,z_1\in\mathbb{N}^*\Rightarrow x_1^2+x_1z_1+z_1^2>1\)
Do đó để \(x^2+y^2+z^2\in\mathbb{P}\Rightarrow d=1\)
Ta thấy \(y^2=xz; (x,z)=1\Rightarrow \exists m,n\in\mathbb{Z}\) sao cho:
\(\left\{\begin{matrix} x=m^2\\ z=n^2\end{matrix}\right.\Rightarrow y=mn\)
Khi đó: \(x^2+y^2+z^2=m^4+m^2n^2+n^4=(m^2+n^2)^2-m^2n^2\)
\(=(m^2+n^2-mn)(m^2+n^2+mn)\)
Để tích trên là số nguyên tố thì buộc một trong hai thừa số phải bằng 1
Dễ thấy \(m^2+n^2-mn< m^2+n^2+mn\Rightarrow m^2+n^2-mn=1\)
\(\Leftrightarrow (m-n)^2+mn=1\Leftrightarrow mn=1-(m-n)^2\leq 1\)
Mà \(mn=y\geq 1\)
Do đó \(mn=1\) hay \(y=1\)
Mặt khác \(mn=1; m,n\in\mathbb{Z}\Rightarrow (m,n)=(1,1); (-1;-1)\)
Cả hai đều thu được \(x=z=1\)
Vậy \((x,y,z)=(1,1,1)\)
b)
Vì \(xz=y^2\Rightarrow x^2-2y^2+z^2=36\)
\(\Leftrightarrow x^2-2xz+z^2=36\)
\(\Leftrightarrow (x-z)^2=36\Leftrightarrow x-z=\pm 6\)
TH1: \(x-z=6\Rightarrow x=z+6\)
Khi đó: \(y^2=xz=z(6+z)=z^2+6z\)
\(\Leftrightarrow y^2+9=(z+3)^2\)
\(\Leftrightarrow (z+3-y)(z+3+y)=9\)
Do \(z+3+y>0; z+3+y> z+3-y\) nên:\((z+3-y,z+3+y)=(1;9)\)
Từ đây ta thu được: \(z=2;y=4\rightarrow x=8\)
Ta có bộ \((x,y,z)=(8;4;2)\)
TH2: \(x-z=-6\). Tương tự như trên ta thu được \((x,y,z)=(2;4;8)\)
ở bài 2 I là E hết nhé:
2, Cho tam giác ABC có 3 góc nhọn, \(D\in AB;E\in AC\) thỏa mãn: BC = BD + CE
Tìm vị trí của D và E để DE nhỏ nhất
Ta có:\(b^2=ac\Rightarrow\frac{a}{b}=\frac{b}{c},c^2=bd\Rightarrow\frac{b}{c}=\frac{c}{d}\)
\(\Rightarrow\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\)
\(\Rightarrow\left(\frac{a}{b}\right)^3=\left(\frac{b}{c}\right)^3=\left(\frac{c}{d}\right)^3=\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{a}{b}\cdot\frac{b}{c}\cdot\frac{c}{d}=\frac{a}{d}\)
\(\Rightarrow\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{a}{d}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\)(T/C)
\(\Rightarrow\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=\frac{a}{d}\left(đpcm\right)\)
a) Ta có: \(|\frac{1}{2}x-3y+1|\ge0\) và \(\left(x-1\right)^2\ge0\Rightarrow-\left(x-1\right)^2\le0\)
=> \(|\frac{1}{2}x-3y+1|=-\left(x-1\right)^2=0\)
=> x-1=0
=> x=1
\(|\frac{1}{2}x-3y+1|=0\)
=> \(\frac{1}{2}.1-3y+1=0\)
=> \(\frac{1}{2}-3y=-1\)
=> \(3y=\frac{1}{2}-\left(-1\right)\)
=>\(3y=\frac{1}{2}+1=\frac{3}{2}\)
=> \(y=\frac{3}{2}:3=\frac{3}{2}.\frac{1}{3}=\frac{1}{2}\)
b) Có: \(x^2\le y;y^2\le z;z\le x\)
=> \(x^4\le y^2\) và \(y^2\le x\)
=> \(x^4\le x\)
=> \(x^4=x\)
=> \(x\in\left\{0;1\right\}\)
Có: \(x^4\le y^2\); \(y^2\le z\)và \(z\le x\)
=> \(x^4\le z\le x\)
Mà \(x^4=x\)
=> \(x^4=x=z\)
=> \(z\in\left\{0;1\right\}\)
Có: \(x^4\le y^2\)và \(y^2\le z\)
=> \(x^4\le y^2\le z\)
Mà \(x^4=x=z\)
=> \(x^4=y^2\)
=> \(y^2\in\left\{0;1\right\}\)
=> \(y\in\left\{0;1\right\}\)
c)=> \(z=\frac{8-x}{3}\)và \(y=\frac{9-2}{2}\)
=> \(x+y+z=x+\frac{9-x}{2}+\frac{8-x}{3}=\frac{6x}{6}+\frac{27-3x}{6}+\frac{16-2x}{6}=\frac{6x+27-3x+16-2x}{6}\)
\(=\frac{x+43}{6}\)
..........Chỗ này?! Có gì đó sai sai.........
Mình nghĩ là \(x;y;z\in N\)thì mới đúng, chứ không âm thì nó có thể làm số thập phân...........Bạn xem lại cái đề đi
d) => \(a^2bc=-4;ab^2c=2;abc^2=-2\)
=> \(ab^2c+abc^2=2+\left(-2\right)=0\)
=> \(abc\left(b+c\right)=0\)
Mà a;b;c là 3 số khác 0
=> \(abc\ne0\)
=> \(b+c=0\)
=> \(b=-c\)
\(a^2bc+ab^2c-abc^2=-4+2-\left(-2\right)=0\)
=> \(abc\left(a+b-c\right)=0\)
Mà \(abc\ne0\)
=> \(a+b-c=0\)
\(a^2bc-abc^2=-4-\left(-2\right)=-2\)
=> \(abc\left(a-c\right)=-2\)
Mà \(abc\ne0\)
=>\(a-c=-2\)
Có \(a+b-c=0\)
=> \(\left(a-c\right)+b=0\)
=> \(-2+b=0\)
=> \(b=2\)
\(b=-c=2\)=> \(c=-2\)
=> \(a-\left(-2\right)=-2\)
=> \(a+2=-2\)
=> \(a=-2-2=-4\).....................Mình cũng thấy cái này lạ lạ à nha....... Bạn mò thử đi, chắc ra -__-
Mỏi tay quáááá
BÀi 2:
Cả 4 câu áp dụng tính chất này: \(\sqrt{a^2}=a\)
a)\(\sqrt{\frac{3^2}{7^2}}=\frac{3}{7}\)
b)\(\frac{\sqrt{3^2}+\sqrt{39^2}}{\sqrt{7^2}+\sqrt{92^2}}=\frac{3+39}{7+92}=\frac{42}{99}=\frac{14}{33}\)
c)\(\frac{\sqrt{3^2}-\sqrt{39^2}}{\sqrt{7^2}-\sqrt{91^2}}=\frac{3-39}{7-91}=\frac{-36}{-84}=\frac{3}{7}\)
d)\(\sqrt{\frac{39^2}{91^2}}=\frac{39}{91}=\frac{3}{7}\)
b)Vì BCNN(3;5) = 15
\(\Rightarrow\frac{x}{2}=\frac{y}{3}\Leftrightarrow\frac{x}{2.5}=\frac{y}{3.5}=\frac{x}{10}=\frac{y}{15};\frac{y}{5}=\frac{z}{7}\Leftrightarrow\frac{y}{5.3}=\frac{z}{7.3}=\frac{y}{15}=\frac{z}{21}\)
\(\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{x+y+z}{10+15+21}=\frac{92}{46}=2\)
\(\Rightarrow\left\{{}\begin{matrix}x=2.10=20\\y=2.15=30\\z=2.21=42\end{matrix}\right.\)
Vậy...
c)Vì BCNN(2;3;5) = 30
\(\Rightarrow2x=3y=5z\Leftrightarrow\frac{2x}{30}=\frac{3y}{30}=\frac{5z}{30}=\frac{x}{15}=\frac{y}{10}=\frac{z}{6}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
WTFFFFFF>>>
d)dễ... áp dụng tính chất DTBN là ra 1/2 rồi tính
e)Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(x=\frac{y}{2}=\frac{z}{4}=\frac{4x}{4}=\frac{3y}{6}=\frac{2x}{8}=\frac{4x-3y+2x}{4-6+8}=\frac{36}{6}=6\)
\(\Rightarrow\left\{{}\begin{matrix}x=6.1=6\\y=6.2=12\\z=6.4=24\end{matrix}\right.\)
Vậy...