Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{x}>2\Leftrightarrow x>4\)
\(5>\sqrt{x}\Leftrightarrow x< 25\)
\(\sqrt{x}< \sqrt{10}\Leftrightarrow x< 10\)( x không âm )
\(\sqrt{3x}< 3\Leftrightarrow3x< 9\Leftrightarrow x< 3\)
\(14\ge7\sqrt{2x}\Leftrightarrow\sqrt{2x}\le2\Leftrightarrow2x\le4\Leftrightarrow x\le2\)
Tham khảo nhé~
xem gi
co ban nho cua toi
may bi loi unikey thong cam nha moi nguoi
hihi
a) \(\sqrt[3]{x}< 2\Leftrightarrow\left(\sqrt[3]{x}\right)^3< 2^3\Leftrightarrow x< 8\)
b) \(\sqrt[3]{2x-1}>-3\Leftrightarrow\left(\sqrt[3]{2x-1}\right)^3>\left(-3\right)^3\Leftrightarrow2x-1>-27\Leftrightarrow2x>-26\Leftrightarrow x>-13\)
c) \(\sqrt[3]{2-3x}\le1\Leftrightarrow\left(\sqrt[3]{2-3x}\right)^3\le1\Leftrightarrow2-3x\le1\Leftrightarrow3x\ge1\Leftrightarrow x\ge\frac{1}{3}\)
d) \(\sqrt[3]{3-4x}\ge5\Leftrightarrow\left(\sqrt[3]{3-4x}\right)^3\ge5^3\Leftrightarrow3-4x\ge125\Leftrightarrow4x\le-122\Leftrightarrow x\le-\frac{61}{2}\)
c, Để BT có nghĩa thì \(x^2-4x+3\ge0\)
\(\Leftrightarrow x^2-4x+4\ge1\)
\(\Leftrightarrow\left(x-2\right)^2\ge1\)
\(\Leftrightarrow\sqrt{\left(x-2\right)^2}\ge1\)
\(\Leftrightarrow|x-2|\ge1\)
\(\Leftrightarrow x-2\ge1\) và \(x-2\le-1\)
\(\Leftrightarrow x\ge3;x\le1\)
bạn thử tải app này xem có đáp án không nhé <3 https://giaingay.com.vn/downapp.html
a/ \(A=\frac{x}{2}+\frac{1}{2x}+\frac{5x}{2}\ge2\sqrt{\frac{x}{4x}}+\frac{5}{2}.1=\frac{7}{2}\)
\("="\Leftrightarrow x=1\)
b/ \(B=\frac{3\left(x+1\right)}{2}+\frac{1}{x+1}-\frac{3}{2}\ge2\sqrt{\frac{3\left(x+1\right)}{2\left(x+1\right)}}-\frac{3}{2}=\frac{-3+2\sqrt{6}}{2}\)
\("="\Leftrightarrow\left(x+1\right)^2=\frac{2}{3}\Rightarrow x=...\)
c/ \(C=\frac{2x-1}{6}+\frac{5}{2x-1}+\frac{1}{6}\ge2\sqrt{\frac{5\left(2x-1\right)}{6\left(2x-1\right)}}+\frac{1}{6}=\frac{1+2\sqrt{30}}{6}\)
\("="\Leftrightarrow\left(2x-1\right)^2=30\Rightarrow x=...\)
d/ \(D=x+\frac{4}{x}+4\ge2\sqrt{\frac{4x}{x}}+4=8\)
\("="\Leftrightarrow x^2=4\Rightarrow x=...\)
e/ \(E=\left(x+3\right)\left(5-x\right)\le\frac{1}{4}\left(x+3+5-x\right)^2=16\)
\("="\Leftrightarrow x+3=5-x\Rightarrow x=...\)
f/ \(F=\frac{1}{2}\left(2x+6\right)\left(5-2x\right)\le\frac{1}{8}\left(2x+6+5-2x\right)^2=\frac{121}{8}\)
\("="\Leftrightarrow2x+6=5-2x\Leftrightarrow x=...\)
a) \(\sqrt{x^4}=2\)( ĐK x ∈ R )
⇔ \(\sqrt{\left(x^2\right)^2}=2\)
⇔ \(\left|x^2\right|=2\)
⇔ \(\orbr{\begin{cases}x^2=2\\x^2=-2\left(loai\right)\end{cases}}\)
⇔ x2 - 2 = 0
⇔ ( x - √2 )( x + √2 ) = 0
⇔ x - √2 = 0 hoặc x + √2 = 0
⇔ x = ±√2
b) \(3\sqrt{x+1}-8=0\)( ĐK x ≥ -1 )
⇔ \(3\sqrt{x+1}=8\)
⇔ \(\sqrt{x+1}=\frac{8}{3}\)
⇔ \(x+1=\frac{64}{9}\)
⇔ \(x=\frac{55}{9}\)( tm )
c) \(2\sqrt{x-3}+\sqrt{25x-75}=14\)( ĐK x ≥ 3 ) ( Vầy hợp lí hơn á )
⇔ \(2\sqrt{x-3}+\sqrt{5^2\left(x-3\right)}=14\)
⇔ \(2\sqrt{x-3}+5\sqrt{x-3}=14\)
⇔ \(7\sqrt{x-3}=14\)
⇔ \(\sqrt{x-3}=2\)
⇔ \(x-3=4\)
⇔ \(x=7\)( tm )
d) \(\sqrt{\left(3x-1\right)^2}=5\)( ĐK x ∈ R )
⇔ \(\left|3x-1\right|=5\)
⇔ \(\orbr{\begin{cases}3x-1=5\\3x-1=-5\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=2\\x=-\frac{4}{3}\end{cases}}\)
e) \(\sqrt{x^2+4x+4}-6=0\)( ĐK x ∈ R )
⇔ \(\sqrt{\left(x+2\right)^2}=6\)
⇔ \(\left|x+2\right|=6\)
⇔ \(\orbr{\begin{cases}x+2=6\\x+2=-6\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=4\\x=-8\end{cases}}\)
\(a)\)\(\sqrt{x^4}=2\)\(\Leftrightarrow\)\(x^2=2\)\(\Rightarrow\)\(\orbr{\begin{cases}x=\sqrt{2}\\x=-\sqrt{2}\end{cases}}\)
Vậy \(x=\sqrt{2}\)\(hoặc\)\(x=-\sqrt{2}\)
\(b)\)\(ĐK:x\ge0\)
\(3\sqrt{x+1}-8=0\)\(\Leftrightarrow\)\(3\sqrt{x}=8\)\(\Leftrightarrow\)\(\sqrt{x}=\frac{8}{3}\)\(\Leftrightarrow\)\(x=(\frac{8}{3})^2\)\(\Leftrightarrow\)\(x=\frac{64}{9}\)\((TM)\)
Vậy \(x=\frac{64}{9}\)
\(d)\)\(\sqrt{(3x-1)^2}=5\)\(\Leftrightarrow\)\(|3x-1|=5\)\((1)\)
- Nếu \(x\ge\frac{1}{3}\)thì \(\left(1\right)\Leftrightarrow3x-1=5\)\(\Leftrightarrow\)\(3x=6\)\(\Leftrightarrow\)\(x=2\)\(\left(TM\right)\)
- Nếu \(x< \frac{1}{3}\)thì \((1)\Leftrightarrow-\left(3x-1\right)=5\)\(\Leftrightarrow\)\(3x-1=-5\)\(\Leftrightarrow\)\(3x=-5+1\)\(\Leftrightarrow\)\(3x=-4\)\(\Leftrightarrow\)\(x=\frac{-4}{3}\left(TM\right)\)
Vậy \(x\in\hept{2;\frac{-4}{3}}\)
- \(e)\)\(\sqrt{x^2+4x+4}-6=0\)\(\Leftrightarrow\)\(\sqrt{(x+2)^2}=6\)\(\Leftrightarrow\)\(|x+2|=6\)\(\left(2\right)\)
-Nếu \(x\ge-2\)thì \(\left(2\right)\Leftrightarrow x+2=6\Leftrightarrow x=4(TM)\)
-Nếu \(x< -2\)thì \(\left(2\right)\Leftrightarrow-\left(x+2\right)=6\Leftrightarrow x+2=-6\Leftrightarrow x=-8\left(TM\right)\)
Vậy \(x=4;x=-8\)