Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(x^2=2\)
=>\(x^2=\left(\sqrt{2}\right)^2\)
=>\(x=\pm\sqrt{2}\)
b: \(x^2=9\)
=>\(x^2=3^2\)
=>\(\left[{}\begin{matrix}x=3\\x=-3\end{matrix}\right.\)
c: \(\left(x-\sqrt{2}\right)^2=2\)
=>\(\left[{}\begin{matrix}x-\sqrt{2}=\sqrt{2}\\x-\sqrt{2}=-\sqrt{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\sqrt{2}\\x=0\end{matrix}\right.\)
d: \(4x^2-1=0\)
=>\(4x^2=1\)
=>\(x^2=\dfrac{1}{4}\)
=>\(\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=-\dfrac{1}{2}\end{matrix}\right.\)
Thay x = -1 và giá trị biểu thức: 4x2 + 5x
\(\Rightarrow\) 4 . (-1)2 + 5 . (-1 )
= 4 . 1 + (-5) = 4 + (-5) = -1
Chọn B
`(4x^2-3)^2+8=0`
`(4x^2-3)^2=-8`
Vì `(4x^2-3)^2 >=0> -8` với mọi `x` nên PT trên vô nghiệm.
a, Thay x=2 vào A, ta được:
\(A\left(2\right)=3.2^3+5-6.2+5.2^2=37\)
Vậy A= 37 khi x=2.
b,
\(A\left(x\right)+B\left(x\right)=\left(3x^3+5-6x+5x^2\right)+\left(4x^2+6x-2x^7-9\right)\\ =-2x^7+3x^3+9x^2-4\)
Cho `H(x)=0`
`=>4x^2-64=0`
`=>(2x-8)(2x+8)=0`
`@TH1:2x-8=0=>2x=8=>x=4`
`@TH2:2x+8=0=>2x=-8=>x=-4`
Vậy nghiệm của `H(x)` là `x=4` hoặc `x=-4`
______________________________________________
Cho `K(x)=0`
`=>(2x+8)^2=0`
`=>2x+8=0`
`=>2x=-8`
`=>x=-4`
Vậy nghiệm của `K(x)` là `x=-4`
Ta có A(1) = 4 + a, A(2) = 16 + 2a.
Vì A(2) = 4A(1) ⇒ 16 + 2a = 4 (4 + a)
⇒ 16 + 2a = 16 + 4a ⇒ a = 0.
Chọn A
\(4x^2-9=0\)
\(4x^2=9\)
\(x^2=\frac{9}{4}\)
\(x^2=\frac{3}{2}^2\)
\(x=\frac{3}{2}\)
4x2 - 9 = 0
4x2 = 0 + 9
4x2 = 9
( 2x )2 = 32
=> 2x = 3
x = \(\frac{3}{2}\)