Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3/ Chu vi hình chữ nhật:
\(\left(\dfrac{1}{4}+\dfrac{3}{10}\right)\cdot2=\dfrac{11}{10}\) (chưa biết đơn vị)
Diện tích hình chữ nhật:
\(\dfrac{1}{4}\cdot\dfrac{3}{10}=\dfrac{11}{20}\) (chưa biết đơn vị)
dấu hiệu chia hết cho 4 là : 2 số cuối cùng chia hết cho 4 thì số đó chia hết cho 4
dấu hiệu chia hết 5 : số có tận cùng là 0 ; 5 thì chia hết 5
Vì \(x1357y⋮5\) => y=0 hoặc 5
TH1 : y = 0
=> x13570\(⋮5\)
vì 70 \(⋮4̸\) ( loại )
TH2 : y = 5
=> \(x13575⋮5\) nhưng 75 ko chia hết 4 (loại )
từ 2 trường hợp trên => ko tồn tại y
\(\Leftrightarrow\) ko có số x1357y \(⋮5;4\)
Vì \(\overline{x1357y}⋮5\) nên \(y\in\left\{0;5\right\}\).
Do \(75⋮4\) nên \(y=0\). Ta được \(\overline{x13570}\).
Vì \(\overline{x13570}⋮4;5\) nên \(x\in\left\{1;2;3;4;5;6;7;8;9\right\}\).
Vậy \(x\in\left\{1;2;3;4;5;6;7;8;9\right\}\)và \(y=0\).
Từ đề bài ta có:
\(T=\dfrac{1+2}{2}.\dfrac{1+3}{3}.\dfrac{1+4}{4}...\dfrac{1+98}{98}.\dfrac{1+99}{99}\)
\(=\dfrac{3}{2}.\dfrac{4}{3}.\dfrac{5}{4}...\dfrac{99}{98}.\dfrac{100}{99}\)
\(=\dfrac{100}{2}\)
\(=50\).
\(T=\left(\dfrac{1}{2}+1\right)\left(\dfrac{1}{3}+1\right)\left(\dfrac{1}{4}+1\right)...\left(\dfrac{1}{98}+1\right)\left(\dfrac{1}{99}+1\right)\)
\(T=\dfrac{3}{2}.\dfrac{4}{3}.\dfrac{5}{4}....\dfrac{99}{98}.\dfrac{100}{99}\)
\(T=\dfrac{3.4.5......99}{3.4.5......99}.\dfrac{100}{2}\)
\(T=50\)
a,(x+17).(25-x)=0
<=>x+17=0 hoặc 25-x=0
<=>x=-17 hoặc x=25
Vậy x=-17 hoặc x=25
b,5.(3-x)+2.(x-7)=-17
15-5x+2x-14=-17
1-3x=-17
3x=18
x=6
Vậy x=6.
c,(x-5).(x^2-9)=0
(x-5).(x.x-9)=0
=>x-5=0 hoặc x.x-9=0
=>x=5 hoặc x=3
Vậy x=5 hoặc x=3.
Tớ chỉ biết làm có zậy thôi có zì thì cậu tự nghĩ tiếp nhé!!!Còn đúng hay sai thì mình không biết đâu nhé!!!hihi!!!
a)3x+3.31-x=81
3x+3+1-x=81
34=81=>x=0
vậy x=0
b)8<32,33,34<90
=>x={2;3;4}.vậy x={2;3;4}
1. Tìm x:
a) 3x + 3. 31 - x = 81.
\(\Rightarrow\) 3x + 3. 31 - x = 34
\(\Rightarrow\) ( x + 3) + (1 - x) = 4
\(\Rightarrow\) x = 0.
b) 8 < 3x < 90.
\(\Rightarrow\) 8 < 31; 32; 33; 34 < 90.
\(\Rightarrow\) x \(\in\) {1; 2; 3; 4}.