Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1:
Đặt: \(A=\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+\frac{1}{6^2}+....+\frac{1}{100^2}\)
\(=\frac{1}{3.3}+\frac{1}{4.4}+\frac{1}{5.5}+\frac{1}{6.6}+....+\frac{1}{100.100}\)
\(A< \frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+.....+\frac{1}{99.100}\)
\(\Rightarrow A< \frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+....+\frac{1}{99}-\frac{1}{100}\)
\(\Rightarrow A< \frac{1}{2}-\frac{1}{100}\)
\(\Rightarrow A< \frac{49}{100}< \frac{50}{100}=\frac{1}{2}\)
\(\Rightarrow A< \frac{1}{2}\)
Vậy:.............
Câu 2:
\(\left(\frac{1}{2}+1\right)\left(\frac{1}{3}+1\right)\left(\frac{1}{4}+1\right)...\left(\frac{1}{98}+1\right)\left(\frac{1}{99}+1\right)\)
\(=\left(\frac{1}{2}+\frac{2}{2}\right)\left(\frac{1}{3}+\frac{3}{3}\right)\left(\frac{1}{4}+\frac{4}{4}\right)...\left(\frac{1}{98}+\frac{98}{98}\right)\left(\frac{1}{99}+\frac{99}{99}\right)\)
\(=\frac{3}{2}.\frac{4}{3}.\frac{5}{4}....\frac{99}{98}.\frac{100}{99}\)
\(=\frac{3.4.5....99.100}{2.3.4...98.99}\)
\(=\frac{100}{2}=50\)
TÌM X
a,\(\left(x-\frac{1}{2}\right)^3=\frac{1}{27}\)
b, \(\left(x-\frac{1}{2}\right)^2=\frac{4}{25}\)
\(\left(x-\frac{1}{2}\right)^3=\frac{1}{27}=\left(\frac{1}{3}\right)^3\)
\(\Leftrightarrow x-\frac{1}{2}=\frac{1}{3}\)
\(\Leftrightarrow x=\frac{1}{3}+\frac{1}{2}\)
\(\Leftrightarrow x=\frac{5}{6}\)
Bài làm
a) \(\left(x-\frac{1}{2}\right)^3=\frac{1}{27}\) b) \(\left(x-\frac{1}{2}\right)^2=\frac{4}{25}\)
=> \(\left(x-\frac{1}{2}\right)^3=\left(\frac{1}{3}\right)^3\) => \(\left(x-\frac{1}{2}\right)^2=\left(\frac{2}{5}\right)^2\)
=> \(x-\frac{1}{2}=\frac{1}{3}\) => \(x-\frac{1}{2}=\frac{2}{5}\)
\(x=\frac{1}{3}+\frac{1}{2}\) \(x=\frac{2}{5}+\frac{1}{2}\)
\(x=\frac{2}{6}+\frac{3}{6}\) \(x=\frac{4}{10}+\frac{5}{10}\)
\(x=\frac{5}{6}\) \(x=\frac{9}{10}\)
Vậy \(x=\frac{5}{6}\) Vậy \(x=\frac{9}{10}\)
# Chúc bạn học tốt #
Tìm x
\(a,2x-25\%=\frac{1}{2}\)
\(b,\left(\frac{3x}{7}+1\right).\left(-0,25\right)=\frac{-1}{28}\)
\(\)
a) \(\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+...+\frac{2}{x\left(x+1\right)}=\frac{4}{5}\)
\(\Leftrightarrow2\times\left(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{4}{5}\)
\(\Leftrightarrow2\times\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{4}{5}\)
\(\Leftrightarrow2\times\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{4}{5}\)
\(\Leftrightarrow2\times\left(\frac{1}{2}-\frac{1}{x+1}\right)=\frac{4}{5}\)
\(\Leftrightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{4}{5}:2\)
\(\Leftrightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{2}{5}\)
\(\Leftrightarrow\frac{1}{x+1}=\frac{2}{5}-\frac{1}{2}\)
\(\Leftrightarrow\frac{1}{x+1}=\frac{4}{10}-\frac{5}{10}=\frac{-1}{10}\)
\(\Leftrightarrow\frac{1}{x+1}=\frac{4}{10}-\frac{5}{10}=\frac{1}{-10}\)
\(\Leftrightarrow x+1=-10\)
\(\Leftrightarrow x=-10-1\)
\(\Leftrightarrow x=-11\)
Hông chắc !!! <3
b) Đề khó hiểu vậy, nếu đề là : \(x+\frac{1}{3}+\frac{1}{3}+\frac{1}{3}=1\)thì làm như sau nha
\(x+\frac{1}{3}+\frac{1}{3}+\frac{1}{3}=1\)
\(\Leftrightarrow x+\left(\frac{1}{3}+\frac{1}{3}+\frac{1}{3}\right)=1\)
\(\Leftrightarrow x+1=1\)
\(\Leftrightarrow x=1-1\)
\(\Leftrightarrow x=0\)
Rất vui vì giúp đc bạn <3
Cô mk giao thế, bó tay.com. Ko bỏ trị tuyệt đối đi vô lý như thế chứ
\(\frac{m}{n}=1+\frac{1}{2}+\frac{1}{3}+.......+\frac{1}{1998}\).Từ 1 đến 1998 có 1998 số. Nên vế phải có 1998 số hạng nên ta ghép thành 999 cặp như sau :
\(\frac{m}{n}=\left(1+\frac{1}{1998}\right)+\left(\frac{1}{2}+\frac{1}{1997}\right)+\left(\frac{1}{3}+\frac{1}{1996}\right)+.....+\left(\frac{1}{999}+\frac{1}{1000}\right)\)\(=\frac{1999}{1.1998}+\frac{1999}{2.1997}+\frac{1999}{3.1996}+.......+\frac{1999}{999.1000}\)
Quy đồng tất cả 999 phân số này ta được:
\(\frac{m}{n}=\frac{1999a_1+1999a_2+1999a_3+........+1999a_{997}+1999a_{9998}+1999a_{999}}{1.2.3.4.5.6.7.8.9..........1996.1997.1998}\)
Với \(a_1;a_2;a_3;...;a_{998};a_{999}\in N\)
\(\frac{m}{n}=\frac{1999.\left(a_1+a_2+a_3+.......+a_{997}+a_{998}+a_{999}\right)}{1.2.3...............1996.1997.1998}\)
Vì 1999 là số nguyên tố.Nên sau khi rút gọn,đưa về dạng phân số tối giản thì từ số vẫn còn thừa số 1999.
\(\Rightarrow m⋮1999\)
a, \(x:3\frac{1}{15}=1\frac{1}{2}\)
\(\Rightarrow x=1\frac{1}{2}\cdot3\frac{1}{15}\)
\(\Rightarrow x=\frac{3}{2}\cdot\frac{46}{15}=\frac{3\cdot46}{2\cdot15}=\frac{1\cdot23}{1\cdot5}=\frac{23}{5}=4\frac{3}{5}\)
\(b)x\cdot\frac{15}{28}=\frac{3}{20}\)
\(\Rightarrow x=\frac{3}{20}:\frac{15}{28}=\frac{3}{20}\cdot\frac{28}{15}=\frac{1}{5}\cdot\frac{7}{5}=\frac{7}{25}\)
Tự làm nốt câu cuối :>
Liv and Maddie ko pít đừng làm nhé :
Ta có : \(2\left(\frac{1}{2}+\frac{1}{x+1}\right)=\frac{1999}{2001}\)
\(\Leftrightarrow1+\frac{2}{x+1}=\frac{1999}{2001}\)
\(\Rightarrow\frac{2}{x+1}=\frac{1999}{2001}-1\)
\(\Rightarrow\frac{2}{x+1}=\frac{-2}{2001}\)
\(\Rightarrow\frac{2}{x+1}=\frac{2}{-2001}\)
=> x + 1 = -2001
=> x = -2002
\(2\cdot\left(\frac{1}{2}+\frac{1}{x+1}\right)=\frac{1999}{2001}\)
\(\frac{1}{2}+\frac{1}{x+1}=2\cdot\frac{1999}{2001}=1,998001\)
\(\frac{1}{x+1}=1,998001-0,5=1,498001\)
Vậy x không tồn tại.