Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2. Gọi 3 chữ số cần tìm là a, b, c
Giả sử a < b < c
=> 2 số lớn nhất là abc và acb
Ta có: abc + bca = 1444
=> a + a = 7
Ví 3 chữ số này khác 0 nên : a = 7, b = 3 . c = 1
tick mk nha
Giả sử a > b > c > d
Khi đó ta có số tự nhiên lớn nhất là \(\overline{abcd}\) và số tự nhiên nhỏ nhất là \(\overline{dcba}\)
=> \(\overline{abcd}+\overline{dcba}=11330\)
=> Ta có : \(a+d=10;b+c=12\)
Vậy \(a+b+c+d=10+12=22\)
Bài 4:
Gọi số tự nhiên cần là abc3 :
Khi đó nếu bỏ chữ số tận cùng thì số mới là abc
Ta có:
abc3 - abc = (1000a + 100b + 10c + 3) - (100a + 10b + c)
=> 900a + 90b + 9c + 3=1992
=> 900a + 90b + 9c=1989
=> 9(100a + 10b + c)=1989
=> 100a + 10b + c = 221
=> abc = 221
=> abc3 = 2213
Gọi 3 chữ số đó là a,b và c(a>b>c>0)
Theo đề bài ta có: abc+acb=1444
Xét hàng chục và đơn vị ta thấy:
-c+b=4 (đv)
-b+c=4(hàng chục)
-> Vậy b+c không nhớ
Ta có b+c=4 mà b>c>0 -> b=3,c=1
Xét hàng trăm ta có: a+a=14 -> a=7
Vậy a=7,b=3,c=1.
Gọi 3 chữ số cần tìm là : a , b , c ( a > b > c > 0 )
Theo đề bài ta có :
=> abc + acb = 1444
=> 100a + 10b + c + 100a + 10c + b = 1444
=> 200a + 11b + 11c = 1444
=> 200a + 11( b + c ) = 1400 + 11 . 4
=> a = 7 ; b = 3 ; c = 1
Gọi 3 chữ số cần tìm là a,b,c
Giả sử: a>b>c
Suy ra:2 số lớn nhất là: abc và acb
abc
+
acb
1444
Suy ra: a+a=7
Vì: 3 chữ số này khác 0 nên:
Suy ra: b =3 c=1 a=7
Gọi 3 chữ số cần tìm là : a , b , c ( a > b > c > 0 )
Theo đề bài ta có :
=> abc + acb = 1444
=> 100a + 10b + c + 100a + 10c + b = 1444
=> 200a + 11b + 11c = 1444
=> 200a + 11( b + c ) = 1400 + 11 . 4
=> a = 7 ; b = 3 ; c = 1
Gọi các chữ số phải tìm là a, b, c trong đó a>b>c>0.
Hai số lớn nhất lập bởi cả ba chữ số trên là abc¯+acb¯=1444.
So sánh các cột đơn vị và cột hàng chục, ta thấy phép cộng c+b không có nhớ.
Vậy c+b=4, mà b>c>0 nên b=3,c=1.
Xét cột hàng trăm : a+a=14 nên a=7.
Ba chữ số phải tìm là 7, 3, 1.
Ta gọi các chữ số phải tìm là a , b , c trong đó a > b > c > 0. Hai số lớn nhất đc lập bởi ba chữ số trên là abc và acb
Ta có : abc + acb =1444
so sánh cột đơn vị và cột hàng chục, ta thấy phép cộng của c và b không có nhớ. Vậy c + b = 4 mà b > c > 0 nên b = 3, c = 1
ta xét cột hàng trăm : a + a = 14 nên a = 7.
Vậy a = 7, b = 3, c = 1.