Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) A = \(\dfrac{1}{x-1}-\dfrac{4}{x+1}+\dfrac{8x}{\left(x-1\right)\left(x+1\right)}\)
= \(\dfrac{x+1-4x+4+8x}{\left(x-1\right)\left(x+1\right)}=\dfrac{5x+5}{\left(x-1\right)\left(x+1\right)}=\dfrac{5}{x-1}\) => đpcm
b) \(\left|x-2\right|=3=>\left[{}\begin{matrix}x-2=3< =>x=5\left(C\right)\\x-2=-3< =>x=-1\left(L\right)\end{matrix}\right.\)
Thay x = 5 vào A, ta có:
A = \(\dfrac{5}{5-1}=\dfrac{5}{4}\)
c) Để A nguyên <=> \(5⋮x-1\)
x-1 | -5 | -1 | 1 | 5 |
x | -4(C) | 0(C) | 2(C) | 6(C) |
a: \(A=\dfrac{x^2+1}{x}+\dfrac{x^3-1}{x^2-x}+\dfrac{x^4-x^3+x-1}{x-x^3}\)
\(=\dfrac{x^2+1}{x}+\dfrac{\left(x-1\right)\left(x^2+x+1\right)}{x\left(x-1\right)}-\dfrac{x^3\left(x-1\right)+\left(x-1\right)}{x\left(x-1\right)\left(x+1\right)}\)
\(=\dfrac{x^2+1}{x}+\dfrac{x^2+x+1}{x}-\dfrac{\left(x-1\right)\left(x^3+1\right)}{x\left(x-1\right)\left(x+1\right)}\)
\(=\dfrac{x^2+1+x^2+x+1}{x}-\dfrac{x^2-x+1}{x}\)
\(=\dfrac{2x^2+x+2-x^2+x-1}{x}=\dfrac{x^2+2x+1}{x}=\dfrac{\left(x+1\right)^2}{x}\)
b: \(x^2+x=12\)
=>\(x^2+x-12=0\)
=>(x+4)(x-3)=0
=>\(\left[{}\begin{matrix}x+4=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\left(nhận\right)\\x=-4\left(loại\right)\end{matrix}\right.\)
Thay x=3 vào A, ta được:
\(A=\dfrac{\left(3+1\right)^2}{3}=\dfrac{16}{3}\)
Khi x=-4 thì \(A=\dfrac{\left(-4+1\right)^2}{-4}=\dfrac{9}{-4}=-\dfrac{9}{4}\)
c: \(A-4=\dfrac{\left(x+1\right)^2}{x}-4\)
\(=\dfrac{\left(x+1\right)^2-4x}{x}\)
\(=\dfrac{x^2+2x+1-4x}{x}=\dfrac{x^2-2x+1}{x}=\dfrac{\left(x-1\right)^2}{x}\)>0 với mọi x>0
=>A>4
a: ĐKXĐ: \(x\notin\left\{1;-1\right\}\)
b: \(C=\dfrac{x}{2x-2}+\dfrac{x^2+1}{2-2x^2}\)
\(=\dfrac{x}{2\left(x-1\right)}-\dfrac{x^2+1}{2\left(x-1\right)\left(x+1\right)}\)
\(=\dfrac{x\left(x+1\right)-x^2-1}{2\left(x-1\right)\left(x+1\right)}\)
\(=\dfrac{x-1}{2\left(x-1\right)\left(x+1\right)}=\dfrac{1}{2\left(x+1\right)}=\dfrac{1}{2x+2}\)
c: \(C=-\dfrac{1}{2}\)
=>\(\dfrac{1}{2x+2}=-\dfrac{1}{2}\)
=>2x+2=-2
=>2x=-4
=>x=-2(nhận)
d: Để C là số nguyên thì \(2x+2\inƯ\left(1\right)\)
=>\(2x+2\in\left\{1;-1\right\}\)
=>\(2x\in\left\{-1;-3\right\}\)
=>\(x\in\left\{-\dfrac{1}{2};-\dfrac{3}{2}\right\}\)
Bổ sung phần c và d luôn:
c, C = \(\dfrac{2}{5}\)
\(\Leftrightarrow\) \(\dfrac{x^2-1}{2x^2+3}\) = \(\dfrac{2}{5}\)
\(\Leftrightarrow\) 5(x2 - 1) = 2(2x2 + 3)
\(\Leftrightarrow\) 5x2 - 5 = 4x2 + 6
\(\Leftrightarrow\) x2 = 11
\(\Leftrightarrow\) x2 - 11 = 0
\(\Leftrightarrow\) (x - \(\sqrt{11}\))(x + \(\sqrt{11}\)) = 0
\(\Leftrightarrow\) \(\left[{}\begin{matrix}x-\sqrt{11}=0\\x+\sqrt{11}=0\end{matrix}\right.\)
\(\Leftrightarrow\) \(\left[{}\begin{matrix}x=\sqrt{11}\left(TM\right)\\x=-\sqrt{11}\left(TM\right)\end{matrix}\right.\)
d, Ta có: \(\dfrac{x^2-1}{2x^2+3}\) = \(\dfrac{x^2+\dfrac{3}{2}-\dfrac{5}{2}}{2\left(x^2+\dfrac{3}{2}\right)}\) = \(\dfrac{1}{2}\) - \(\dfrac{5}{4\left(x^2+\dfrac{3}{2}\right)}\)
C nguyên \(\Leftrightarrow\) \(\dfrac{5}{4\left(x^2+\dfrac{3}{2}\right)}\) nguyên \(\Leftrightarrow\) 5 \(⋮\) 4(x2 + \(\dfrac{3}{2}\))
\(\Leftrightarrow\) 4(x2 + \(\dfrac{3}{2}\)) \(\in\) Ư(5)
Xét các TH:
4(x2 + \(\dfrac{3}{2}\)) = 5 \(\Leftrightarrow\) x2 = \(\dfrac{-1}{4}\) \(\Leftrightarrow\) x2 + \(\dfrac{1}{4}\) = 0 (Vô nghiệm)
4(x2 + \(\dfrac{3}{2}\)) = -5 \(\Leftrightarrow\) x2 = \(\dfrac{-11}{4}\) \(\Leftrightarrow\) x2 + \(\dfrac{11}{4}\) = 0 (Vô nghiệm)
4(x2 + \(\dfrac{3}{2}\)) = 1 \(\Leftrightarrow\) x2 = \(\dfrac{-5}{4}\) \(\Leftrightarrow\) x2 + \(\dfrac{5}{4}\) = 0 (Vô nghiệm)
4(x2 + \(\dfrac{3}{2}\)) = -1 \(\Leftrightarrow\) x2 = \(\dfrac{-7}{4}\) \(\Leftrightarrow\) x2 + \(\dfrac{7}{4}\) = 0 (Vô nghiệm)
Vậy không có giá trị nào của x \(\in\) Z thỏa mãn C \(\in\) Z
Chúc bn học tốt! (Ko bt đề sai hay ko nữa :v)
a,ĐK: \(\hept{\begin{cases}x\ne0\\x\ne\pm3\end{cases}}\)
b, \(A=\left(\frac{9}{x\left(x-3\right)\left(x+3\right)}+\frac{1}{x+3}\right):\left(\frac{x-3}{x\left(x+3\right)}-\frac{x}{3\left(x+3\right)}\right)\)
\(=\frac{9+x\left(x-3\right)}{x\left(x-3\right)\left(x+3\right)}:\frac{3\left(x-3\right)-x^2}{3x\left(x+3\right)}\)
\(=\frac{x^2-3x+9}{x\left(x-3\right)\left(x+3\right)}.\frac{3x\left(x+3\right)}{-x^2+3x-9}=\frac{-3}{x-3}\)
c, Với x = 4 thỏa mãn ĐKXĐ thì
\(A=\frac{-3}{4-3}=-3\)
d, \(A\in Z\Rightarrow-3⋮\left(x-3\right)\)
\(\Rightarrow x-3\inƯ\left(-3\right)=\left\{-3;-1;1;3\right\}\Rightarrow x\in\left\{0;2;4;6\right\}\)
Mà \(x\ne0\Rightarrow x\in\left\{2;4;6\right\}\)
d) Để \(\dfrac{x^2-59}{x+8}\) nguyên \(\Leftrightarrow x^2-59⋮x+8\)
\(\Rightarrow\left(x^2-64\right)+5⋮x+8\)
\(\Rightarrow\left(x^2-8^2\right)+5⋮x+8\)
\(\Rightarrow\left(x-8\right)\left(x+8\right)+5⋮x+8\)
\(\Rightarrow5⋮x+8\)
\(\Rightarrow x+8\in U\left(5\right)=\left\{-1;1;-5;5\right\}\)
\(\Rightarrow x\in\left\{-9;-7;-13;-3\right\}\)
Vậy \(x\in\left\{-9;-7;-13;-3\right\}\) thì \(\dfrac{x^2-59}{x+8}\in Z\)