K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 9 2023

giúp mik đi 

xin đấy

25 tháng 9 2023

app như cc

hỏi ko ai trả lời

DD
21 tháng 8 2021

Với \(m\)chẵn: \(m^2+1=\left(2k\right)^2+1=4k^2+1\)

Với \(m\)lẻ: \(m^2+1=\left(2k+1\right)^2+1=4k^2+4k+1+1=4k^2+4k+2\)

Do đó \(m^2+1\)chia cho \(4\)dư \(1\)hoặc \(2\).

Mà với \(n\ge2\)thì \(2^n⋮4\)do đó mâu thuẫn. 

Vậy \(n=0\)hoặc \(n=1\).

Thử với từng giá trị ta thu được nghiệm là \(\left(0,0\right),\left(\pm1,1\right)\).

8 tháng 7 2018

có : 

5+5^2+5^3+....+5^100 

=(5+5^2 )+(5^3+5^4 )+...+(5^99+5^100 ) 

=5(5+1)+5^3(5+1)+...+5^99(5+1) 

=5.6+...+5^99.6 

=6.(5+53+...+599 ) 

=> chia hết cho 6

=> đcpcm

8 tháng 7 2018

Bài 2: 

2^m + 2^n = 2^(m + n) 
<=> 2^m = 2^(m + n) - 2^n 
<=> 2^m = 2^n(2^m - 1) 
<=> 2^(m - n) = 2^m - 1 (1) 
Vì m >= 1 nên 2^m - 1 >= 2^1 - 1 =1. Từ (1), ta suy ra 2^(m - n) > = 1 = 2^0 nên m >= n (2). 
Mặt khác, vì vai trò của m và n trong phương trình đã cho là đối xứng nên phương trình đã cho cũng tương đương với 2^(n - m) = 2^n - 1 (3) và (3) cho ta n > = m (4). 
(2) và (4) cho ta m = n và phương trình trở thành 
2^(m + 1) = 2^(2m) 
<=> m + 1 = 2m 
<=> m = 1 
Vậy phương trình có nghiệm m = n = 1. 

11 tháng 3 2017

dài thế ai mà làm được

5 tháng 4 2017
ai tk mk thì mk tk lại
15 tháng 1 2019

n + 1 là ước của n2 + 5

<=> n2 + 5 chia hết cho n + 1

<=> n2 - 1 + 6 chia hết cho n + 1

<=> ( n-1)( n+1) + 6 chia hết cho n + 1

Vì \(n\inℤ\Rightarrow\left(n-1\right)\left(n+1\right)\inℤ\)

=> 6 chia hết cho n + 1

<=> \(n+1\inƯ\left(6\right)=\left\{\pm1;\pm2;\pm3;\pm6\right\}\)

Bn tự làm tieeos néh!