Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Với \(m\)chẵn: \(m^2+1=\left(2k\right)^2+1=4k^2+1\)
Với \(m\)lẻ: \(m^2+1=\left(2k+1\right)^2+1=4k^2+4k+1+1=4k^2+4k+2\)
Do đó \(m^2+1\)chia cho \(4\)dư \(1\)hoặc \(2\).
Mà với \(n\ge2\)thì \(2^n⋮4\)do đó mâu thuẫn.
Vậy \(n=0\)hoặc \(n=1\).
Thử với từng giá trị ta thu được nghiệm là \(\left(0,0\right),\left(\pm1,1\right)\).
có :
5+5^2+5^3+....+5^100
=(5+5^2 )+(5^3+5^4 )+...+(5^99+5^100 )
=5(5+1)+5^3(5+1)+...+5^99(5+1)
=5.6+...+5^99.6
=6.(5+53+...+599 )
=> chia hết cho 6
=> đcpcm
Bài 2:
2^m + 2^n = 2^(m + n)
<=> 2^m = 2^(m + n) - 2^n
<=> 2^m = 2^n(2^m - 1)
<=> 2^(m - n) = 2^m - 1 (1)
Vì m >= 1 nên 2^m - 1 >= 2^1 - 1 =1. Từ (1), ta suy ra 2^(m - n) > = 1 = 2^0 nên m >= n (2).
Mặt khác, vì vai trò của m và n trong phương trình đã cho là đối xứng nên phương trình đã cho cũng tương đương với 2^(n - m) = 2^n - 1 (3) và (3) cho ta n > = m (4).
(2) và (4) cho ta m = n và phương trình trở thành
2^(m + 1) = 2^(2m)
<=> m + 1 = 2m
<=> m = 1
Vậy phương trình có nghiệm m = n = 1.
n + 1 là ước của n2 + 5
<=> n2 + 5 chia hết cho n + 1
<=> n2 - 1 + 6 chia hết cho n + 1
<=> ( n-1)( n+1) + 6 chia hết cho n + 1
Vì \(n\inℤ\Rightarrow\left(n-1\right)\left(n+1\right)\inℤ\)
=> 6 chia hết cho n + 1
<=> \(n+1\inƯ\left(6\right)=\left\{\pm1;\pm2;\pm3;\pm6\right\}\)
Bn tự làm tieeos néh!
M=5-2/2/5=2/3/5
N=5:2/5=12/1/2