Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2-4xy+5y^2=169\)
\(x^2-4xy+4y^2+y^2-169=0\)
\(\left(x^2-4xy+4y^2\right)+\left(y^2-13^2\right)=0\)
\(\left(x-2y\right)^2+\left(y-13\right)\left(y+13\right)=0\)
b/ \(\Leftrightarrow x^2-4xy+4y^2+y^2=13^2\)
\(\Leftrightarrow\left(x-2y\right)^2=\left(13^2-y^2\right)\)
\(\Rightarrow y^2\le13^2\)và \(13^2-y^2\)là số chính phương . Do đó :
\(y^2=0\)hay \(y=0\)
Thay vào ta có các nghiệm sau \(\left(13,0\right);\left(-13;0\right)\)
a) Ta có \(A=a^3-6a^2-7a+12=\left(a-1\right)\left(a^2-5a+12\right)=\left(a-1\right)\left(a^2-5a+6\right)+6\left(a-1\right)\)
=\(\left(a-1\right)\left(a-2\right)\left(a-3\right)+6\left(a-1\right)\)
Mà (a-1)(a-2)(a-3) là tích 3 số nguyên liên tiếp => cúng chia hết cho 6 => ... chia hết cho 6(ĐPCM)
^_^