K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 11 2017

bài 1:

n+2\(\in\)\(Ư\left(3\right)\)

\(\Rightarrow\left[{}\begin{matrix}n+2=1\\n+2=-1\\n+2=3\\n+2=-3\end{matrix}\right.\rightarrow\left[{}\begin{matrix}n=-1\\n=-3\\n=1\\n=-5\end{matrix}\right.\)

vậy để n3+n2-n+5\(⋮\)n+2 thì n\(\in\left(-1;-3;1;-5\right)\)

b2:

ta có : n3+3n-5=(n2+2)n+(n-5)

để n3+3n-5\(⋮\)n2+2 thì n-5=0

\(\Rightarrow\)n=5

7 tháng 9 2015


Bài 3:
a, Ta có: 3.n^3+10.n^2-5
= 3.+n^3+9.n^2+3n-3n-1-4
= n^2.(3n+1)+ 3n(3n+1)-(3n+1)-4
= (3n+1)(n^2+3n-1)-4
Để 3.+10.-5 chia hết cho 3n+1
=> (3n+1)(+3n-1)-4 chia hết cho 3n+1
=>  -4 chia hết cho 3n+1
mà Ư(-4) = {-4;-2;-1;1;2;4}
=> 3n+1 = {-4;-2;-1;1;2;4}
=> 3n = { -5;-3; -2; 0; 1; 3}
=> n={-5/3; -1;-2/3 ;0;1/3;1}
mà n thuộc Z
=> n = {-1; 0; 1}

7 tháng 12 2016

cho minh hoi 9n^2 the con 1n^2 dau

13 tháng 11 2017

bố không biết

5 tháng 12 2017

\(\frac{n^3-n^2+2n+7}{n^2+1}=\frac{\left(n^3+n\right)-\left(n^2+1\right)+n+8}{n^2+1}=\frac{n\left(n^2+1\right)-\left(n^2+1\right)+n+8}{n^2+1}\)

\(n-1+\frac{n+8}{n^2+1}\)

Do \(n^3-n^2+2n+7⋮n^2+1\) \(\Rightarrow\frac{n^3-n^2+2n+7}{n^2+1}\in Z\)

\(\Rightarrow n-1+\frac{n+8}{n^2+1}\in Z\)

\(\Rightarrow n=-8\)

15 tháng 5 2017

Lấy n^3 - 3n^2 -3n -1 chia cho n^2 + n + 1 được thương là n-4 dư 3.

Để N^3 - 3n^2 - 3n - 1 chia hết cho n^2 + n +1 thì 3 phải chia hết cho n^2 + n +1 hay n^2 + n + 1 thuộc Ư(3)

Suy ra: n^2 + n + 1 = 3 suy ra n= 1; -2 

           n^2 + n + 1 = -3 suy ra n không thuộc Z ( loại)

           n^2 + n +1 = 1 suy ra n = -1;0

           n^2 + n + 1 = -1 suy ra n không thuộc Z( loại)

Vậy n = -2;-1;0;1

           

7 tháng 3 2020

-1;0-1;-2 nha bạn

2 tháng 11 2015

Ta có :\(\frac{n^{3^{ }_{+2n^2-3n+2_{ }}}}{n^2-n}=n+3+\frac{2}{n^2-n}\)Để n^3+2n^2-3n+2 chia hết cho n^2-n thì \(\frac{2}{n^2-n}\)phải là số nguyên => 2n+1\(\in\)Ư(2)=(-2;-1;12).......................................rồi pn lm típ nka, đoạn sau đơn giản r :)) tick cho tớ vs

28 tháng 6 2015

có cần giải ra k hay chỉ cần kq thui

28 tháng 6 2015

#NNM giải ra luôn a TT^TT