\(\frac{-9x+\sqrt{x}-1}{\sqrt{x}}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
15 tháng 6 2021

\(A=\frac{-9x+\sqrt{x}-1}{\sqrt{x}}=1-\left(9\sqrt{x}+\frac{1}{\sqrt{x}}\right)\le1-2\sqrt{9\sqrt{x}.\frac{1}{\sqrt{x}}}=1-2.3=-5\)

Dấu \(=\)khi \(9\sqrt{x}=\frac{1}{\sqrt{x}}\Leftrightarrow x=\frac{1}{9}\)

Vậy \(maxA=-5\).

13 tháng 9 2016

a/ Ta có

P = \(\frac{1+\sqrt{x}}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\) - \(\frac{2+x}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\) - \(\frac{1+\sqrt{x}}{x+\sqrt{x}+1}\)

\(\frac{-\sqrt{x}}{1+\sqrt{x}+x}\)

14 tháng 9 2016

mình muốn hỏi câu b cơ bạn ơi

19 tháng 6 2019

Căn bậc hai. Căn bậc ba

AH
Akai Haruma
Giáo viên
31 tháng 7 2020

Lời giải:

ĐK: $x\geq 0; x\neq 1$

$P=\frac{\sqrt{x}+1}{(\sqrt{x}-1)(\sqrt{x}+1)}-\frac{x+2}{(\sqrt{x}-1)(x+\sqrt{x}+1)}-\frac{(\sqrt{x}+1)(\sqrt{x}-1)}{(\sqrt{x}-1)(x+\sqrt{x}+1)}$

$=\frac{1}{\sqrt{x}-1}=-\frac{x+2}{(\sqrt{x}-1)(x+\sqrt{x}+1)}-\frac{x-1}{(\sqrt{x}-1)(x+\sqrt{x}+1)}$

$=\frac{x+\sqrt{x}+1-(x+2)-(x-1)}{(\sqrt{x}-1)(x+\sqrt{x}+1)}$

$=\frac{-\sqrt{x}(\sqrt{x}-1)}{(\sqrt{x}-1)(x+\sqrt{x}+1)}=\frac{-\sqrt{x}}{x+\sqrt{x}+1}$

$\Rightarrow Q=\frac{2(x+\sqrt{x}+1)}{-\sqrt{x}}+\sqrt{x}$

$=-\left(\sqrt{x}+\frac{2}{\sqrt{x}}+2\right)$

Dễ thấy $\sqrt{x}+\frac{2}{\sqrt{x}}+2\geq 2\sqrt{2}+2$ theo BĐT Cô-si

$\Rightarrow Q\leq -(2\sqrt{2}+2)$ hay $Q_{\max}=-(2\sqrt{2}+2)$

 

15 tháng 12 2019

1, a, ĐKXĐ: x > 0

\(\Rightarrow P=\frac{\sqrt{x}\left(x\sqrt{x}+1\right)}{x-\sqrt{x}+1}-\left(2\sqrt{x}+1\right)+1\)

\(\Rightarrow P=\frac{\sqrt{x}\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}{x-\sqrt{x}+1}-2\sqrt{x}-1+1\)

\(\Rightarrow P=\sqrt{x}\left(\sqrt{x}+1\right)-2\sqrt{x}\)

\(\Rightarrow P=x+\sqrt{x}-2\sqrt{x}\)

\(\Rightarrow P=x-\sqrt{x}\)

b, Thay x=100 vào biểu thức P, ta có:

P= 100 - \(\sqrt{100}\)

\(\Rightarrow P=100-10=90\)

Vậy với x=100 thì P=90

c, Ta có: P= \(x-\sqrt{x}=\left(\sqrt{x}-\frac{1}{2}\right)^2-\frac{1}{4}\ge-\frac{1}{4}\)

Dấu "=" xảy ra khi...

2, a, ĐKXĐ: x \(\ge\) 0, x \(\ne\) 1

\(\Rightarrow A=\left(\frac{x+3\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}-\frac{1}{\sqrt{x}-1}-\frac{1}{\sqrt{x}+2}\right):\frac{1}{x-1}\)

\(\Rightarrow A=\left(\frac{x+3\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}-\frac{\sqrt{x}+2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}-\frac{\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\right).\frac{x-1}{1}\)

\(\Rightarrow A=\left(\frac{x+3\sqrt{x}-1-\sqrt{x}-2-\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\right).\frac{x-1}{1}\)

\(\Rightarrow\)A= \(\frac{x+\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}.\frac{x-1}{1}\)= x-1

b, Để \(\frac{1}{A}\)là số tự nhiên (x \(\ge0\), \(x\ne1\))

\(\Rightarrow x-1=1\)

\(\Rightarrow x=2\)

Vậy x=2 thì \(\frac{1}{A}\) là số tự nhiên.