\(A=\sqrt{1-4x+4x^2}+\sqrt{4x^2-12x+9}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 6 2019

\(A=\) \(\left|2x-1\right|+\left|2x-3\right|\)

*Với \(2x< 1\) thì \(A=1-2x+3-2x=4-4x\)

*Với \(1\le2x< 3\) thì \(A=2x-1+3-2x=2\)

*Với \(2x\ge3\) thì \(A=2x-1+2x-3=4x-4\)

Vì đề bài yêu cầu tìm GTLN nên ta không thể tìm được giá trị thỏa mãn

18 tháng 8 2020

c)\(C=5+\sqrt{-4x^2-4x}\)

\(C=5+\sqrt{1-\left(4x^2+4x+1\right)}\)

\(C=5+\sqrt{1-\left(2x+1\right)^2}\)

Ta có: \(-\left(2x+1\right)^2\le0\)

\(\sqrt{1-\left(2x+1\right)^2}\le1\)

\(\sqrt{1-\left(2x+1\right)^2}+5\le6\Leftrightarrow C\le6\)

Vậy \(C_{max}=6\) khi \(2x+1=0\Leftrightarrow x=-\frac{1}{2}\)

f) \(F=\sqrt{4x^2-4x+1}+\sqrt{4x^2-12x+9}\)

\(F=\sqrt{\left(2x-1\right)^2}+\sqrt{\left(2x-3\right)^2}\)

\(F=\left|2x-1\right|+\left|3-2x\right|\ge\left|2x+1+3-2x\right|=4\)

\(F_{min}=4\) khi \(\left(2x-1\right)\left(3-2x\right)\ge0\Leftrightarrow\frac{1}{2}\le x\le\frac{3}{2}\)

Mấy còn lại tương tự =)))

28 tháng 7 2018

tích mình đi

ai tích mình

mình ko tích lại đâu

thanks

28 tháng 7 2018

\(\sqrt{\left(1+2x\right)^2}+\sqrt{\left(2x-3\right)^2}=|1+2x|+|2x-3|=|1+2x|+|3-2x|>=|1+2x+3-2x|=4\)

=>p min=4 

dau "="xay ra  <=>(1-2x)(3-2x)>=0

=>x

14 tháng 9 2020

P/s : sửa đề

\(A=\sqrt{4x^2-4x+1}+\sqrt{4x^2-12x+9}\)

\(A=\sqrt{\left(2x-1\right)^2}+\sqrt{\left(2x-3\right)^2}\)

\(A=\left|2x-1\right|+\left|2x-3\right|\)

\(A=\left|1-2x\right|+\left|2x-3\right|\ge\left|1-2x+2x-3\right|=\left|-2\right|=2\)

Vậy min A = 2 khi và chỉ khi ...........................

14 tháng 9 2020

Sửa một chút : \(A=\sqrt{4x^2-4x+1}+\sqrt{4x^2-12x+9}\)

\(A=\sqrt{4x^2-4x+1}+\sqrt{4x^2-12x+9}\)

\(=\sqrt{\left(2x-1\right)^2}+\sqrt{\left(2x-3\right)^2}\)

\(=\left|2x-1\right|+\left|2x-3\right|\)

\(=\left|2x-1\right|+\left|3-2x\right|\)

Áp dụng bất đẳng thức \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\)ta có :

\(A=\left|2x-1\right|+\left|3-2x\right|\ge\left|2x-1+3-2x\right|=\left|2\right|=2\)

Đẳng thức xảy ra khi \(ab\ge0\)

=> \(\left(2x-1\right)\left(3-2x\right)\ge0\)

Xét hai trường hợp :

1. \(\hept{\begin{cases}2x-1\ge0\\3-2x\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}2x\ge1\\-2x\ge-3\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge\frac{1}{2}\\x\le\frac{3}{2}\end{cases}}\Leftrightarrow\frac{1}{2}\le x\le\frac{3}{2}\)

2. \(\hept{\begin{cases}2x-1\le0\\3-2x\le0\end{cases}}\Leftrightarrow\hept{\begin{cases}2x\le1\\-2x\le-3\end{cases}}\Leftrightarrow\hept{\begin{cases}x\le\frac{1}{2}\\x\ge\frac{3}{2}\end{cases}}\)( loại )

=> MinA = 2 <=> \(\frac{1}{2}\le x\le\frac{3}{2}\)

11 tháng 8 2018

\(a,\sqrt{4x^2-4x+1}+\sqrt{4x^2-12x+9}\)

\(=\sqrt{\left(2x-1\right)^2}+\sqrt{\left(2x-3\right)^2}\)

\(=|2x-1|+|2x-3|\)

\(b,\sqrt{49x^2-42x+9}+\sqrt{49x^2+42x+9}\)

\(=\sqrt{\left(7x-3\right)^2}+\sqrt{\left(7x+3\right)^2}\)

\(=|7x-3|+|7x+3|\)

=.= hok tốt!!

23 tháng 10 2016

\(\sqrt{1+4x+4x^2}\) + \(\sqrt{4x^2-12x+9}\)

\(\sqrt{\left(1+2x\right)^2}\) + \(\sqrt{\left(2x-3\right)^2}\)

= 1 + 2x + 2x - 3

= 4x - 2

= 2(2x - 1)

a) Ta có: \(P=\sqrt{4x^2-4x+1}+\sqrt{4x^2-12x+9}\)

\(=\sqrt{\left(2x-1\right)^2}+\sqrt{\left(2x-3\right)^2}\)

\(=\left|2x-1\right|+\left|2x-3\right|\)

\(=\left|2x-1\right|+\left| 3-2x\right|\ge\left|2x-1+3-2x\right|=\left|2\right|=2\)

Dấu '=' xảy ra khi \(\left(2x-1\right)\left(3-2x\right)\ge0\)

\(\Leftrightarrow\left[{}\begin{matrix}\left(2x-1\right)\left(3-2x\right)>0\\\left(2x-1\right)\left(3-2x\right)=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}\left\{{}\begin{matrix}2x-1>0\\3-2x>0\end{matrix}\right.\\\left\{{}\begin{matrix}2x-1< 0\\3-2x< 0\end{matrix}\right.\end{matrix}\right.\\\left[{}\begin{matrix}2x-1=0\\3-2x=0\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}\left\{{}\begin{matrix}x>\frac{1}{2}\\x< \frac{3}{2}\end{matrix}\right.\\\left\{{}\begin{matrix}x< \frac{1}{2}\\x>\frac{3}{2}\end{matrix}\right.\end{matrix}\right.\\\left[{}\begin{matrix}x=\frac{1}{2}\\x=\frac{3}{2}\end{matrix}\right.\end{matrix}\right.\)\(\Leftrightarrow\frac{1}{2}\le x\le\frac{3}{2}\)

Vậy: Giá trị nhỏ nhất của biểu thức \(P=\sqrt{4x^2-4x+1}+\sqrt{4x^2-12x+9}\) là 2 khi \(\frac{1}{2}\le x\le\frac{3}{2}\)

b) Ta có: \(Q=\sqrt{49x^2-42x+9}+\sqrt{49x^2+42x+9}\)

\(=\sqrt{\left(7x-3\right)^2}+\sqrt{\left(7x+3\right)^2}\)

\(=\left|7x-3\right|+\left|7x+3\right|\)

\(=\left|7x-3\right|+\left|-7x-3\right|\ge\left|7x-3-7x-3\right|=\left|-6\right|=6\)

Dấu '=' xảy ra khi \(\left(7x-3\right)\left(-7x-3\right)\ge0\)

\(\Leftrightarrow\frac{-3}{7}\le x< \frac{3}{7}\)

Vậy: ...

15 tháng 7 2020

ở câu a P=\(\sqrt{4x^2-4x+1}\)+\(\sqrt{4x^2-12x+9}\)nha các bn