Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
gtnn của A là 10 .DBXR khi x=-1/2
gtnn của B là -2019.DBXR khi x=20
2.
gtln của A là 10.DBXR khi x=-1
gtln của B là 3.DBXR khi x=1
tự làm chi tiết ra nhé tớ chỉ ghi kết quả thôi gõ mỏi tay lắm!
thông cảm nha:3
a) Vì I3,7 - xI có GTNN = 0 => x = 0 (để I3,7 - xI có GTNN) => GTNN của I3,7 - xI + 2,5 là 2,5
b) Cách giải giống câu trên . KQ : -4,5
A = | x - 3 | + 1
Ta có : \(\left|x-3\right|\ge0\forall x\Rightarrow\left|x+3\right|+1\ge1\)
Dấu = xảy ra <=> | x + 3 | = 0
<=> x + 3 = 0
<=> x = -3
Vậy AMin = 1 khi x = -3
B = -100 - | 7 - x |
Ta có : \(\left|7-x\right|\ge0\forall x\Rightarrow-\left|7-x\right|\le0\)
=> \(-100-\left|7-x\right|\le-100\)
Dấu = xảy ra <=> - | 7 - x | = 0
<=> 7 - x = 0
<=> x = 7
Vậy BMax = -100 khi x = 7
C = -( x + 1 )2 - | 2 - y | + 11
Ta có : \(\hept{\begin{cases}\left(x+1\right)^2\ge0\forall x\\\left|2-y\right|\ge0\forall y\end{cases}\Rightarrow}\hept{\begin{cases}-\left(x+1\right)^2\le0\\-\left|2-y\right|\le0\end{cases}}\)
=> \(-\left(x+1\right)^2-\left|2-y\right|\le11\forall x,y\)
Dấu = xảy ra <=> -( x + 1 )2 = 0 và | 2 - y | = 0
<=> x + 1 = 0 và 2 - y = 0
<=> x = -1 và y = 2
Vậy CMax = 11 khi x = -1 ; y = 2
D = ( x - 1 )2 + | 2y + 2 | + 3
Ta có : \(\hept{\begin{cases}\left(x-1\right)^2\ge0\forall x\\\left|2y+2\right|\ge0\forall y\end{cases}\Rightarrow\left(x-1\right)^2+\left|2y+2\right|+3\ge}3\)
Dấu = xảy ra <=> ( x - 1 )2 = 0 và | 2y + 2 | = 0
<=> x - 1 = 0 và 2y + 2 = 0
<=> x = 1 và y = -1
Vậy DMin = 3 khi x = 1 và y = -1
a) A=/x-3/+1>=0+1=1
dấu "="sảy ra <=>x-3=0<=>x=3
vậy min A=1 <=>x=3
b) B=-100-/7-x/=<-100-0=-100
dấu "="sảy ra <=>7-x=0<=>x=7
vậy max B=-100<=>x=7
c)C=-(x+1)^2-/2-y/+11=<-0-0+11=11
dấu "="sảy ra <=>x=-1vày=2
vậy max C=11<=>x=-1 và y=-2
d)D=(x-1)^2+/2y+2/+3>=0+0+3=3
dấu "="sảy ra <=>x=1 và y =-1
vậy min D=3<=>x=1 và y=-1
a) Để A có giá trị nhỏ nhất thì (x-7)2 < 0
Hay (x-7)2+ 2003 < 2003
Vì (x-7)2 luôn dương => GTNN của (x-7)2+ 2003 = 2003
Dấu = chỉ xảy ra khi (x-7)2=0
=> x-7 =0
x = 7
Vây GTNN của A = 2003 <=> x=7
b) Để B có GTLN thì -(x+2)2 > 0
Hay -(x+2)2+17 > 17
x thuộc tập N
a) Ta có (x-7)2 >=0 với mọi x thuộc Z
=> (x-7)2 +2003 >= 2003 với mọi z thuộc Z
hay A >= 2003
Dấu "=" xảy ra <=> (x-7)2=0 <=> x-7=0 <=> x=7
Vậy Min A=2003 đạt được khi x=7
b) Ta có -(x+2)2 =< 0 với mọi x thuộc Z
=> -(x+2)2+17 =< 17 với mọi x thuộc Z
hay B =< 17
Dấu "=" <=> -(x+2)2=0
<=> x+2=0
<=> x=-2
Vậy MaxB=17 đạt được khi x=-2
Bài 1 :
A có GTLN <=> |3,7 - x| có GTLN <=> x bé nhất => x không tìm được vì không có số nguyên âm bé nhất. Nếu x là số tự nhiên thì x = 0 => |3,7 - 0| + 2,5 = 3,7 + 2,5 = 6,2
1: a) Ta có: A=|3,7-x| +2,5 => |3,7-x| > hoặc =0,v x =>A > hoặc = 2,5
Vậy lớn nhất của A=2,5
b) Ta có: B= |x+1,5|-4,5 => |x+1,5| > hoặc = 0 , v x => B > hoặc = -4,5
Vậy lớn nhất của B=-4,5
2:c) Ta có: C= 1,5-|1,1+x| =>-|1,1+x| > hoặc =0 , v x (BN CÓ THỂ THÊM DẤU ÂM TRC GT TUYỆT ĐỐI ĐỂ CHUYỂN THÀNH < HOẶC=0)
=> B< hoặc=1,5
Vậy nhỏ nhất của C=1,5
d) Ta có:D= -3,7-|1,7-x| => -|1,7-x| < hoặc = 0, v x (BN CÓ THỂ BỎ DẤU ÂM TRC GT TUYỆT ĐỐI ĐỂ CHUYỂN THÀNH > HOẶC =0)
=> D < HOẶC =-3,7
vậy nhỏ nhất của D=-3,7
Nếu thấy đúng bấm đúng cho mình nhak
a, Ta có: \(\left|x+2\right|\ge0\Rightarrow A=\left|x+2\right|+50\ge50\)
Dấu "=" xảy ra khi x=-2
Vậy GTNN của A=50 khi x=-2
b, Ta có: \(\left|x-100\right|\ge0;\left|y+200\right|\ge0\Rightarrow\left|x-100\right|+\left|y+200\right|\ge0\Rightarrow B=\left|x-100\right|+\left|y+200\right|-1\ge-1\)
Dấu "=" xảy ra khi x=100,y=-200
Vậy GTNN của B=-1 khi x=100,y=-200
c, Đặt C = 2015-|x+5|
Ta có: \(\left|x+5\right|\ge0\Rightarrow-\left|x+5\right|\le0\Rightarrow C=2015-\left|x+5\right|\le2015\)
Dấu "=" xảy ra khi x=-5
Vậy GTLN của C = 2015 khi x = -5