K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 7 2017

\(a,A=5x-x^2\)

\(=-\left(x^2-5x+\dfrac{25}{4}\right)+\dfrac{25}{4}\)

\(=-\left(x-\dfrac{5}{2}\right)^2+\dfrac{25}{4}\le\dfrac{25}{4}\forall x\)

Vậy Max A = \(\dfrac{25}{4}\) khi \(x-\dfrac{5}{2}=0\Rightarrow x=\dfrac{5}{2}\)

\(b,B=x-x^2=-\left(x^2-x+\dfrac{1}{4}\right)+\dfrac{1}{4}\)

\(=-\left(x-\dfrac{1}{2}\right)^2+\dfrac{1}{4}\le\dfrac{1}{4}\forall x\)

Vậy Max B = \(\dfrac{1}{4}\) khi \(x-\dfrac{1}{2}=0\Rightarrow x=\dfrac{1}{2}\)

\(c,4x-x^2+3=7-\left(4-4x+x^2\right)\)

\(=7-\left(2-x\right)^2\le7\forall x\)

vậy Max C = 7 khi 2 - x =0 => x = 2

\(d,D=-x^2+8x-11=-\left(x^2-8x+16\right)+5\)

\(=-\left(x-4\right)^2+5\le5\forall x\)

vậy Max D = 5 khi x - 4 = 0 => x = 4

\(e,E=5-8x-x^2=21-\left(16+8x+x^2\right)\)

\(=21-\left(4+x\right)^2\le21\forall x\)

Vậy Max E = 21 khi 4 + x = 0 => x = -4

\(f,F=4x-x^2+1=5-\left(4-4x+x^2\right)\)

\(=5-\left(4-x\right)^2\le5\forall x\)

Vậy Max F = 5 khi 4 - x =0 => x = 4

29 tháng 7 2016

\(A=5x-x^2=-\left(x^2-5x\right)=-\left[x^2-2.x.\frac{5}{2}+\left(\frac{5}{2}\right)^2-\left(\frac{5}{2}\right)^2\right]=-\left(x-\frac{5}{2}\right)^2+\frac{25}{4}\)

Vì \(\left(x-\frac{5}{2}\right)^2\ge0\left(x\in R\right)\)

nên \(-\left(x-\frac{5}{2}\right)^2\le0\left(x\in R\right)\)

do đó \(-\left(x-\frac{5}{2}\right)^2+\frac{25}{4}\le\frac{25}{4}\left(x\in R\right)\)

Vậy  \(Max_A=\frac{25}{4}\)khi \(x-\frac{5}{2}=0\Leftrightarrow x=\frac{5}{2}\)

\(B=x-x^2=-\left(x^2-x\right)=-\left(x^2-2x.\frac{1}{2}+\left(\frac{1}{2}\right)^2-\left(\frac{1}{2}\right)^2\right)=-\left[\left(x-\frac{1}{2}\right)^2-\frac{1}{4}\right]=-\left(x-\frac{1}{2}^2\right)+\frac{1}{4}\)

Vì \(\left(x-\frac{1}{2}\right)^2\ge0\left(x\in R\right)\)

nên \(-\left(x-\frac{1}{2}\right)^2\le0\left(x\in R\right)\)

do đó \(-\left(x-\frac{1}{2}\right)^2+\frac{1}{4}\le\frac{1}{4}\left(x\in R\right)\)

Vậy \(Max_B=\frac{1}{4}\)khi \(x-\frac{1}{2}=0\Leftrightarrow x=\frac{1}{2}\)

\(C=4x-x^2+3=-\left(x^2-4x-3\right)=-\left(x^2-2.x.2+2^2-7\right)=-\left(x-2\right)^2+7\)

Vì \(\left(x-2\right)^2\ge0\left(x\in R\right)\)

nên \(-\left(x-2\right)^2\le0\left(x\in R\right)\)

do đó \(-\left(x-2\right)^2+7\le7\left(x\in R\right)\)

Vậy \(Max_C=7\)khi \(x-2=0\Leftrightarrow x=2\)

\(D=-x^2+6x-11=-\left(x^2-6x+11\right)=-\left(x^2-2.x.3+3^2+2\right)=-\left(x-3^2\right)-2\)

Vì \(\left(x-3\right)^2\ge0\left(x\in R\right)\)

nên \(-\left(x-3\right)^2\le0\left(x\in R\right)\)

do đó \(-\left(x-3\right)^2-2\le-2\left(x\in R\right)\)

Vậy \(Max_D=-2\)khi \(x-3=0\Leftrightarrow x=3\)

\(E=5-8x-x^2=-\left(x^2+8x-5\right)=-\left(x^2+2.x.4+4^2-21\right)=-\left(x+4\right)^2+21\)

Vì \(\left(x+4\right)^2\ge0\left(x\in R\right)\)

nên \(-\left(x+4\right)^2\le0\left(x\in R\right)\)

do đó \(-\left(x+4\right)^2+21\le21\left(x\in R\right)\)

Vậy \(Max_E=21\)khi \(x+4=0\Leftrightarrow x=-4\)

F= \(4x-x^2+1=-\left(x^2-4x-1\right)=-\left(x^2-2.x.2+2^2-5\right)=-\left(x-2\right)^2+5\)

Vì \(\left(x-2\right)^2\ge0\left(x\in R\right)\)

nên \(-\left(x-2\right)^2\le0\left(x\in R\right)\)

do đó \(-\left(x-2\right)^2+5\le5\left(x\in R\right)\)

Vậy \(Max_F=5\)khi \(x-2=0\Leftrightarrow x=2\)

29 tháng 7 2016

thankyou so much

what can i help you ?

i will help if i can 

24 tháng 5 2017

F =x^4-6x^3+9x^2+x^2-6x+9

=(x^2-3x)^2 + (x-3)^2

ta thấy (x^2-3x)^2 >= 0

(x-3)^2>=0

=>GTNN của C là 0

dấu bằng xảy ra khi và chỉ khi x=3

24 tháng 5 2017

Ôn tập cuối năm phần số học

7 tháng 10 2021

\(A=5x-x^2=-\left(x^2-5x+\frac{25}{4}\right)+\frac{25}{4}=-\left(x-\frac{5}{2}\right)^2+\frac{25}{4}\le\frac{25}{4}\forall x\)

Dấu '' = '' xảy ra khi: \(x-\frac{5}{2}=0\Rightarrow x=\frac{5}{2}\)

Vậy \(MaxA=\frac{25}{4}\) khi \(x=\frac{5}{2}\)

\(B=x-x^2-\left(x^2-x+\frac{1}{4}\right)+\frac{1}{4}=-\left(x-\frac{1}{2}\right)^2+\frac{1}{4}\le\frac{1}{4}\forall x\)

Dấu '' = '' xảy ra khi: \(x-\frac{1}{2}=0\Rightarrow x=\frac{1}{2}\)

Vậy \(MaxB=\frac{1}{4}\) khi \(x=\frac{1}{2}\)

\(C=4x-x^2+3=7-\left(4-4x+x^2\right)=7-\left(2-x\right)^2\le7\forall x\)

Dấu '' = '' xảy ra khi: \(2-x=0\Rightarrow x=2\)

Vậy \(MaxC=7\) khi \(x=2\)

7 tháng 10 2021

Bạn xem lại đề phần \(D\) nhé.

\(E=-\left(x^2+8x-5\right)=-\left(x^2+8x+16-21\right)=-\left(x+4\right)^2+21\le21\)

Vậy \(MaxE=21\) khi \(x=-4\)

\(F=-\left(x^2-4x-1\right)=-\left(x^2-4x+4-5\right)=-\left(x-2\right)^2+5\le5\)

Vậy \(MaxF=5\) khi \(x=2\)

7 tháng 4 2020

a) \(A=\left(x^2-2.2x+4\right)-3\)

\(A=\left(x-2\right)^2-3\ge-3\Leftrightarrow x=2\)

Vậy minA = -3 khi x = 2

b) \(B=4x^2+4x+11\)

\(B=\left(\left(2x\right)^2+2x.1+1\right)+10\)

\(B=\left(2x+1\right)^2+10\ge10\Leftrightarrow x=-\frac{1}{2}\)

Vậy min B = 10 khi x = -1/2

c) \(C=\left(x11\right)\left(x+3\right)\left(x+2\right)\left(x+6\right)\)

\(C=\left(x-1\right)\left(x+6\right)\left(x+3\right)\left(x+2\right)\)

\(C=\left(x^2+5x-6\right)\left(x^2+5x+6\right)\)

\(C=\left(x^2+5x\right)^2-36\ge-36\Leftrightarrow\left[{}\begin{matrix}x=-5\\x=0\end{matrix}\right.\)

Vậy MinC= -36 khi x =0 và x = -5

d) \(D=2x^2+y^2-2xy+2x-4y+9\)

\(D=y^2-2y\left(x+2\right)+\left(x+2\right)^2-x^2-4x-4+2x^2+2x+9\)

\(D=\left(y^2-y-x\right)^2+x^2-2x+5\)

\(D=\left(y^2-x-2\right)+\left(x-1\right)^2+4\ge4\Leftrightarrow\left[{}\begin{matrix}x=1\\y=3\end{matrix}\right.\)

Vậy min D = 4 khi x = 1 và y = 3

4 tháng 9 2018

\(a.A=5x-x^2\)

\(=-\left(x^2-5x\right)=-\left[\left(x-\dfrac{5}{2}\right)^2+\dfrac{25}{4}\right]=-\left(x-\dfrac{5}{2}\right)^2+\dfrac{25}{4}\le\dfrac{25}{4}\)

\(\Rightarrow Max_A=\dfrac{25}{4}\) khi \(x=\dfrac{5}{2}\)

\(b.B=x-x^2=-\left(x^2-x\right)=-\left[\left(x-\dfrac{1}{2}\right)^2-\dfrac{1}{4}\right]=-\left(x-\dfrac{1}{2}\right)^2+\dfrac{1}{4}\le\dfrac{1}{4}\)

\(\Rightarrow Max_B=\dfrac{1}{4}\Leftrightarrow x=\dfrac{1}{2}\)

\(c.C=4x-x^2+3=-\left(x^2-4x-3\right)=-\left(x^2-4x+4-7\right)=-\left(x-2\right)^2+7\le7\)

\(\Rightarrow Max_C=7\Leftrightarrow x=2\)

4 tháng 9 2018

a) Ta có:

\(A=5x-x^2\)

\(=-\left(x^2-5x\right)\)

\(=-\left(x^2-5x\right)-6,25+6,25\)

\(=-\left(x^2-5x+6,25\right)+6,25\)

\(=-\left(x-2,5\right)^2+6,25\)

Ta lại có:

\(\left(x-2,5\right)^2\ge0\)

\(\Rightarrow-\left(x-2,5\right)^2\le0\)

\(\Rightarrow-\left(x-2,5\right)^2+6,25\le6,25\)

\(\Rightarrow A\le6,25\)

Dấu "=" xảy ra \(\Leftrightarrow\left(x-2,5\right)^2=0\)

\(\Leftrightarrow x-2,5=0\)

\(\Leftrightarrow x=2,5\)

Vậy MaxA = 6,25 \(\Leftrightarrow x=2,5\)

5 tháng 11 2017

Giải như sau.

(1)+(2)⇔x2−2x+1+√x2−2x+5=y2+√y2+4⇔(x2−2x+5)+√x2−2x+5=y2+4+√y2+4⇔√y2+4=√x2−2x+5⇒x=3y(1)+(2)⇔x2−2x+1+x2−2x+5=y2+y2+4⇔(x2−2x+5)+x2−2x+5=y2+4+y2+4⇔y2+4=x2−2x+5⇒x=3y

⇔√y2+4=√x2−2x+5⇔y2+4=x2−2x+5, chỗ này do hàm số f(x)=t2+tf(x)=t2+t đồng biến ∀t≥0∀t≥0
Công việc còn lại là của bạn ! 

30 tháng 9 2018

\(\left(x+6\right)\left(2x+1\right)=0\)

<=>  \(\orbr{\begin{cases}x+6=0\\2x+1=0\end{cases}}\)

<=>  \(\orbr{\begin{cases}x=-6\\x=-\frac{1}{2}\end{cases}}\)

Vậy....

hk tốt

^^

18 tháng 10 2020

Trông chán nhỉ :v mấy bài này lm hết rồi mà chả bik vứt đâu :v

a)\(=x^2+\frac{1}{2}.2x+\frac{1}{4}+\frac{3}{4}\)

\(=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\forall x\)

Dấu "=" xảy ra ⇔ \(x=-\frac{1}{2}\)

(câu này là tìm Min nhé <3)

b) Tương tự câu a đặt dấu -ra ngoài tìm max

c) \(=\left(x^2-4x+4\right)-3\)

\(=\left(x-2\right)^2-3\ge-3\forall x\)

Dấu "=" xảy ra ⇔ x = 2

d) \(=\left(4x^2+4x+1\right)+10\)

\(=\left(2x+1\right)^2+10\ge10\forall x\)

Dấu "=" xảy ra ⇔ x = -1/2

e, Đặt 3 ra ngoài làm tương tự maasy câu trên nhé<3

f, \(=\left(x^2-2x+1\right)+\left(y^2-4y+4\right)+1\)

\(=\left(x-1\right)^2+\left(y-2\right)^2+1\ge1\forall x;y\)

Dấu "=" xảy ra ⇔ x = 1 ;y = 2