Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{2a^2+ab+2b^2}=\sqrt{\frac{5}{4}\left(a+b\right)^2+\frac{3}{4}\left(a-b\right)^2}\ge\frac{5}{4}\left(a+b\right)\)
Tương tự cộng vế theo vế thì
\(M\ge\frac{5}{4}\left(2a+2b+2c\right)=\frac{5}{2}\left(a+b+c\right)=\frac{5}{2}\cdot2019\)
Dấu "=" xảy ra tại \(a=b=c=\frac{2019}{3}\)
bài 4 có trên mạng nha chị.tí e làm cách khác
bài 5 chị tham khảo bđt min cop ski r dùng svác là ra ạ.giờ e coi đá bóng,coi xong nghĩ tiếp ạ.
Nếu \(a=0\) hoặc \(b=0\) thì \(a=b=0\to a-b=0,2a+2b+1=1\) là các số chính phương.
Xét trường hợp \(a,b\) là số nguyên dương.
Từ giả thiết suy ra \(2a^2+a-2b^2-b=b^2\to\left(a-b\right)\left(2a+2b+1\right)=b^2.\)
Đặt \(d=UCLN\left(a-b,2a+2b+1\right)\to b^2\vdots d^2\to b\vdots d\to a\vdots d\to2a+2b\vdots d\to1\vdots d\to d=1.\)
Thành thử hai số \(a-b,2a+2b+1\) nguyên tố cùng nhau, có tích là số chính phương. Suy ra từng số phải là số chính phương (ĐPCM)
a/ \(2a^2+a=3b^2+b\)
\(\Leftrightarrow2\left(a^2-b^2\right)+\left(a+b\right)=b^2\)
\(\Leftrightarrow\left(a-b\right)\left(2a+2b+1\right)=b^2\)
Giả sử d là UCLN (a - b, 2a + 2b + 1) thì ta có
b2 chia hết cho d2 => b chia hết cho d
Mà 2a + 2b + 1 - 2(a - b) = 4b + 1 chia hết cho d
=> 1 chia hết cho d hay d = 1
=> (a - b) và (2a + 2b +1) nguyên tố cùng nhau
Vậy 2a + 2b + 1 là số chính phương
2 SỐ NGUYÊN TỐ CÙNG NHAU KHÔNG CÓ NGHĨA LÀ 1 TRONG 2 SỐ ĐÓ LÀ SỐ CHÍNH PHƯƠNG : VIDU 5 VÀ 6 LÀ 2 SỐ NG TỐ CÙNG NHAU VÌ CÓ UCLN=1 NHƯNG KO CÓ SỐ NÀO LÀ SỐ CHÍNH PHƯƠNG CẢ...HIHIHI
B3 mk tìm đc cách giải r nhưng bạn nào muốn thì trả lời cg đc
Các bạn giải giúp mình B2 và B5 nhé. Mấy bài kia mình giải được rồi.
Đặt \(\left(a^{\dfrac{1}{3}};b^{\dfrac{1}{3}};c^{\dfrac{1}{3}}\right)\rightarrow\left(x;y;z\right)\)\(\Rightarrow\left\{{}\begin{matrix}x,y,z>0\\xyz=1\\\left(a^3;b^3;c^3\right)\rightarrow\left(x^9;y^9;z^9\right)\end{matrix}\right.\)
\(BDT\Leftrightarrow\dfrac{1}{2x^9+3x^3+2}+\dfrac{1}{2y^9+3y^3+2}+\dfrac{1}{2z^9+3z^3+2}\ge\dfrac{3}{7}\)
Ta có BĐT: \(\dfrac{1}{2x^9+3x^3+2}\ge\dfrac{3}{7\left(x^{12}+x^6+1\right)}\)
\(\Leftrightarrow\dfrac{\left(x-1\right)\left(x^2+x+1\right)\left(7x^9+x^6+8x^3-1\right)}{7\left(x^6-x^3+1\right)\left(x^6+x^3+1\right)\left(2x^9+3x^3+2\right)}\ge0\) *Đúng*
Tương tự cho 2 BĐT còn lại rồi cộng theo vế:
\(VT\ge\dfrac{3}{7}\left(\dfrac{1}{x^{12}+x^6+1}+\dfrac{1}{y^{12}+y^6+1}+\dfrac{1}{z^{12}+z^6+1}\right)\)
Cần chứng minh \(\dfrac{1}{x^{12}+x^6+1}+\dfrac{1}{y^{12}+y^6+1}+\dfrac{1}{z^{12}+z^6+1}\ge1\)
Đặt tiếp \(\left(x^6;y^6;z^6\right)\rightarrow\left(n;h;t\right)\) thì có:
\(\dfrac{1}{n^2+n+1}+\dfrac{1}{h^2+h+1}+\dfrac{1}{t^2+t+1}\ge1\forall nht=1;n,h,t>0\)
Cái này đã làm rồi Here - còn tại sao lại đặt và có BĐT phụ như vậy thì ko nói nhé :)
ta có \(3\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2\)
\(\Leftrightarrow3\left(a^2+b^2+c^2\right)\ge9\)
\(\Leftrightarrow a^2+b^2+c^2\ge3\)
Bất đẳng thức chứng minh tương đương với:
\(\frac{a^2b}{2+a^2b}+\frac{b^2c}{2+b^2c}+\frac{c^2a}{2+c^2a}\le1\)
Áp dụng Cô-si ta có:
\(2+a^2b=1+1+a^2b\ge3\sqrt[3]{a^2b}\)
\(\Rightarrow\frac{a^2b}{2+a^2b}\le\frac{1}{3}\sqrt[3]{a^2b^2c^2}\le\frac{2a^2+b^2}{9}\)
CHưng minh tương tự ta có:
\(\frac{b^2c}{2+b^2c}\le\frac{2b^2+c^2}{9},\frac{c^2a}{2+c^2a}\le\frac{2c^2+a^2}{9}\)
Cộng là ta có \(đpcm.\)
Dấu \(=\)xảy ra khi \(a=b=c=1\)
a.
\(\Leftrightarrow x\left(y+1\right)^2=32y\Leftrightarrow x=\dfrac{32y}{\left(y+1\right)^2}\)
Do y và y+1 nguyên tố cùng nhau \(\Rightarrow32⋮\left(y+1\right)^2\)
\(\Rightarrow\left(y+1\right)^2=\left\{4;16\right\}\)
\(\Rightarrow...\)
b.
\(2a^2+a=3b^2+b\Leftrightarrow2\left(a-b\right)\left(a+b\right)+a-b=b^2\)
\(\Leftrightarrow\left(2a+2b+1\right)\left(a-b\right)=b^2\)
Gọi \(d=ƯC\left(2a+2b+1;a-b\right)\)
\(\Rightarrow b^2\) chia hết \(d^2\Rightarrow b⋮d\) (1)
Lại có:
\(\left(2a+2b+1\right)-2\left(a-b\right)⋮d\)
\(\Rightarrow4b+1⋮d\) (2)
(1);(2) \(\Rightarrow1⋮d\Rightarrow d=1\)
\(\Rightarrow2a+2b+1\) và \(a-b\) nguyên tố cùng nhau
Mà tích của chúng là 1 SCP nên cả 2 số đều phải là SCP (đpcm)