K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 8 2019

2.

Đặt \(\left\{{}\begin{matrix}2n+2003=k^2\\3n+2005=q^2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}3k^2=6n+6009\\2q^2=6n+4010\end{matrix}\right.\)

\(\Leftrightarrow3k^2-2q^2=1999\)(*)

Vì 1999 là số lẻ, \(2q^2\) là số chẵn do đó \(3k^2\) phải là số lẻ

\(\Rightarrow k^2\) lẻ \(\Leftrightarrow k\) lẻ

Đặt \(k=2a+1\)

(*) \(\Leftrightarrow3\left(2a+1\right)^2-2q^2=1999\)

\(\Leftrightarrow3\left(4a^2+4a+1\right)-2q^2=1999\)

\(\Leftrightarrow12a^2+12a+3-2q^2=1999\)

\(\Leftrightarrow12a^2+12a-2q^2=1996\)

\(\Leftrightarrow2q^2=12a^2+12a-1996\)

\(\Leftrightarrow q^2=6a^2+6a-998\)

\(\Leftrightarrow q^2=6a\left(a+1\right)-998\)

\(a\left(a+1\right)\) là tích 2 số liên tiếp nên \(a\left(a+1\right)⋮2\)

Do đó \(6a\left(a+1\right)=3\cdot2a\left(a+1\right)⋮4\)

Mà 998 chia 4 dư 2

Vì vậy \(6a\left(a+1\right)-998\) chia 4 dư 2

Mặt khác \(q^2\) là số chính phương nên \(q^2\) chia 4 không dư 2

Vậy không có giá trị nào của \(n\) thỏa mãn đề bài.

13 tháng 8 2019

@Akai Haruma, @Nguyễn Việt Lâm, tth, Trần Thanh Phương,

Nguyễn Văn Đạt, svtkvtm, buithianhtho, Lê Thảo, lê thị hương giang

Giúp mk vs nha! Cảm ơn nhiều!

26 tháng 11 2021

1. Tìm tất cả các bộ ba số nguyên tố $a,b,c$ đôi một khác nhau thỏa mãn điều kiện $$20abc<30(ab+bc+ca)<21abc$$ - Số học - Diễn đàn Toán học

2. [LỜI GIẢI] Hỏi có bao nhiêu số nguyên dương có 5 chữ số < - Tự Học 365

 

30 tháng 8 2019

Đặt \(a-b=x;b-c=y;c-a=z\)

\(\Rightarrow x+y+z=a-b+b-c+c-a=0\)

Lúc đó: \(B=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\)

Mà \(x+y+z=0\Rightarrow2\left(x+y+z\right)=0\Rightarrow\frac{2\left(x+y+z\right)}{xyz}=0\)

\(\Rightarrow B=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+\frac{2\left(x+y+z\right)}{xyz}\)

\(=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+\frac{2}{yz}+\frac{2}{xz}+\frac{2}{xy}\)

\(=\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2\)

12 tháng 6 2020

Bài cuối có Max nữa nhé, cần thì ib mình làm cho.

Giả sử \(c=min\left\{a;b;c\right\}\Rightarrow c\le1< 2\Rightarrow2-c>0\)

Ta có:\(P=ab+bc+ca-\frac{1}{2}abc=\frac{ab}{2}\left(2-c\right)+bc+ca\ge0\)

Đẳng thức xảy ra tại \(a=3;b=0;c=0\) và các hoán vị

18 tháng 6 2020

3/ \(P=\Sigma\frac{\left(3-a-b\right)\left(a-b\right)^2}{3}+\frac{5}{2}abc\ge0\)

2n+2003=a^2

2n+2005=b^2

ta co 3a^2-2b^2=6n+6009-6n-4010=1999<=>a^2-b^2=1999 (1)

ro rang ta thay a^2 la so le=> a la so le =>a=2k+1

tu 1 =>3.(2k+1)^2-2b^2=1999<=>12x^3+12x+3-2b^2=1999

<=>2b^2=12x^2+12x-1996

<=>b^2=6x^2+6x-998=>b^2=6x(x+1)=998

vi x.(x+1) chia het cho 2

=>6x(x+1) chia het cho 4

ma 998 chia 4 du 2 

=>b^2 chia 4 du 2 (vo li)         vi 1 so chinh phuong chia 4 lon hon 1 chia 4 du 1 hoac chia het

=>khong co n thoa man de bai

27 tháng 8 2019

Cảm ơn OLM đã trừ điểm https://olm.vn/thanhvien/kimmai123az, e rất ghi nhận sự tiến bộ về sự công bằng của olm.Nhưng vẫn còn nhìu cây mà con chó này copy nek, mong olm xét ạ https://olm.vn/hoi-dap/detail/228356929591.html////////https://olm.vn/hoi-dap/detail/228472453946.html/////https://olm.vn/hoi-dap/detail/228437567447.html//////////https://olm.vn/hoi-dap/detail/228435268921.html

Vô trangh cá nhân của e sẽ thấy đc những câu trả lời "siêu hay" của con chóhttps://olm.vn/thanhvien/kimmai123az

6 tháng 10 2019

\(\frac{a}{\sqrt{bc\left(1+a^2\right)}}=\frac{a}{\sqrt{bc+a\left(a+b+c\right)}}=a\sqrt{\frac{1}{a+b}.\frac{1}{c+a}}\le\frac{\frac{a}{a+b}+\frac{a}{c+a}}{2}\)

Tương tự 2 cái còn lại cộng lại ta đc \(VT\le\frac{3}{2}\)

Dấu "=" xảy ra khi \(a=b=c=\sqrt{3}\)

6 tháng 10 2019

Cach khac

Dat \(P=\frac{a}{\sqrt{bc\left(1+a^2\right)}}+\frac{b}{\sqrt{ca\left(1+b^2\right)}}+\frac{c}{\sqrt{ab\left(1+c^2\right)}}\)

Ta co:

\(a+b+c=abc\)

\(\Rightarrow\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=1\)

Dat \(\left(\frac{1}{a};\frac{1}{b};\frac{1}{c}\right)=\left(x;y;z\right)\)

\(\Rightarrow xy+yz+zx=1\)

\(\Rightarrow P=\sqrt{\frac{yz}{1+x^2}}+\sqrt{\frac{zx}{1+y^2}}+\sqrt{\frac{xy}{1+z^2}}\)

Ta lai co:

\(\sqrt{\frac{yz}{1+x^2}}=\sqrt{\frac{yz}{xy+yz+zx+x^2}}=\sqrt{\frac{yz}{\left(x+y\right)\left(z+x\right)}}\le\frac{1}{2}\left(\frac{y}{x+y}+\frac{z}{z+x}\right)\)

Tuong tu:

\(\sqrt{\frac{zx}{1+y^2}}\le\frac{1}{2}\left(\frac{z}{y+z}+\frac{x}{x+y}\right)\)

\(\sqrt{\frac{xy}{1+z^2}}\le\frac{1}{2}\left(\frac{x}{z+x}+\frac{y}{y+z}\right)\)

\(\Rightarrow P\le\frac{1}{2}\left(\frac{x+y}{x+y}+\frac{y+z}{y+z}+\frac{z+x}{z+x}\right)=\frac{3}{2}\)

Dau '=' xay ra khi \(x=y=z=\frac{1}{\sqrt{3}}\)

\(\Rightarrow a=b=c=\sqrt{3}\) 

Vay \(P_{min}=\frac{3}{2}\)khi \(a=b=c=\sqrt{3}\)