Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. Ta có:\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=\frac{a+2b-3c}{2+6-12}=\frac{-20}{-4}=5\)
\(\Rightarrow\hept{\begin{cases}\frac{a}{2}=5\\\frac{b}{3}=5\\\frac{c}{4}=5\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}a=10\\b=15\\c=20\end{cases}}\)
2. Ta có:\(\frac{a}{2}=\frac{b}{3}\Rightarrow\frac{a}{10}=\frac{b}{15}\)
\(\frac{b}{5}=\frac{c}{4}\Rightarrow\frac{b}{15}=\frac{c}{12}\)
\(\Rightarrow\frac{a}{10}=\frac{b}{15}=\frac{c}{12}=\frac{a-b+c}{10-15+12}=\frac{-49}{7}=-7\)
\(\Rightarrow\hept{\begin{cases}\frac{a}{10}=-7\\\frac{b}{15}=-7\\\frac{c}{12}=-7\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}a=-70\\b=-105\\c=-84\end{cases}}\)
1. Ta có:a2 =b3 =c4 =a+2b−3c2+6−12 =−20−4 =5
a2 =5 |
b3 =5 |
c4 =5 |
a=10 |
b=15 |
c=20 |
2. Ta có:a2 =b3 ⇒a10 =b15
b5 =c4 ⇒b15 =c12
⇒a10 =b15 =c12 =a−b+c10−15+12 =−497 =−7
a10 =−7 |
b15 =−7 |
c12 =−7 |
a=−70 |
b=−105 |
c=−84 |
Bài 3:
a,Đặt A = \(\frac{1}{2}-\frac{1}{4}+\frac{1}{8}-\frac{1}{16}+\frac{1}{32}-\frac{1}{64}\)
A = \(\frac{1}{2}-\frac{1}{2^2}+\frac{1}{2^3}-\frac{1}{2^4}+\frac{1}{2^5}-\frac{1}{2^6}\)
2A = \(1-\frac{1}{2}+\frac{1}{2^2}-\frac{1}{2^3}+\frac{1}{2^4}-\frac{1}{2^5}\)
2A + A = \(\left(1-\frac{1}{2}+\frac{1}{2^2}-\frac{1}{2^3}+\frac{1}{2^4}-\frac{1}{2^5}\right)+\left(\frac{1}{2}-\frac{1}{2^2}+\frac{1}{2^3}-\frac{1}{2^4}+\frac{1}{2^5}-\frac{1}{2^6}\right)\)
3A = \(1-\frac{1}{2^6}\)
=> 3A < 1
=> A < \(\frac{1}{3}\)(đpcm)
b, Đặt A = \(\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}-\frac{4}{3^4}+...+\frac{99}{3^{99}}-\frac{100}{3^{100}}\)
3A = \(1-\frac{2}{3}+\frac{3}{3^2}-\frac{4}{4^3}+...+\frac{99}{3^{98}}-\frac{100}{3^{99}}\)
3A + A = \(\left(1-\frac{2}{3}+\frac{3}{3^2}-\frac{4}{4^3}+...+\frac{99}{3^{98}}-\frac{100}{3^{99}}\right)-\left(\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}-\frac{4}{3^4}+...+\frac{99}{3^{99}}-\frac{100}{3^{100}}\right)\)
4A = \(1-\frac{1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+...+\frac{1}{3^{98}}-\frac{1}{3^{99}}-\frac{100}{3^{100}}\)
=> 4A < \(1-\frac{1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+...+\frac{1}{3^{98}}-\frac{1}{3^{99}}\) (1)
Đặt B = \(1-\frac{1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+...+\frac{1}{3^{98}}-\frac{1}{3^{99}}\)
3B = \(3-1+\frac{1}{3}-\frac{1}{3^2}+...+\frac{1}{3^{97}}-\frac{1}{3^{98}}\)
3B + B = \(\left(3-1+\frac{1}{3}-\frac{1}{3^2}+...+\frac{1}{3^{97}}-\frac{1}{3^{98}}\right)+\left(1-\frac{1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+...+\frac{1}{3^{98}}-\frac{1}{3^{99}}\right)\)
4B = \(3-\frac{1}{3^{99}}\)
=> 4B < 3
=> B < \(\frac{3}{4}\) (2)
Từ (1) và (2) suy ra 4A < B < \(\frac{3}{4}\)=> A < \(\frac{3}{16}\)(đpcm)
Bài 1 :
Theo bài ra ta có : \(\frac{a}{b}=\frac{2}{3}\Leftrightarrow\frac{a}{2}=\frac{b}{3}\)
Áp dụng t/c dãy tỉ số ''='' nhau ta có
\(\frac{a}{2}=\frac{b}{3}=\frac{a+b}{2+3}=\frac{10}{5}=2\)
\(\Leftrightarrow\frac{a}{2}=2\Leftrightarrow a=4\)
\(\Leftrightarrow\frac{b}{3}=2\Leftrightarrow b=6\)
Bài 2 :
Tìm khó quá cj thử x2;x3 ko ra rồi )):
\(1.\frac{4}{3}.a=\frac{1}{50}\)
\(a=\frac{1}{50}:\frac{4}{3}\)
\(a=\frac{3}{200}\)
\(2.\frac{1}{20}.a=4\)
\(a=4:\frac{1}{20}\)
\(a=80\)
bài 1
đổi 2%=1^50
ta có :4^3.a=1^50
=>a=1^50:4^3
=>a=1^50.3^4
=>a=3^200
bài 2
đổi 5%=1^20
ta có :1^20.a=4
=>a= 4.20
=>a=80