K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 8 2021

7x = 3y 

=> x/3 = y/7

áp dụng tc của dãy tỉ số = nhau ta có : 

x/3 = y/7 = (x-y)/(3-7) mà x - y = 16

=> x/3 = y/7 = -4

=> x = -12 và y = -28

7.x=3.y

\(\Leftrightarrow\)x/3=y/7

Áp dụng...........:

x/3=y/7=x-y/3-7=\(-\frac{16}{4}\) =-4

x/3=-4

x=-12

y/7=-4

y=-28

Vậy...

NV
20 tháng 1

Áp dụng t/c dãy tỉ số bằng nhau:

a.

\(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{2x}{6}=\dfrac{4y}{20}=\dfrac{2x+4y}{6+20}=\dfrac{28}{26}=\dfrac{14}{13}\)

\(\Rightarrow\left\{{}\begin{matrix}x=3.\dfrac{14}{13}=\dfrac{52}{13}\\y=5.\dfrac{14}{13}=\dfrac{70}{13}\end{matrix}\right.\)

(Em có nhầm đề 26 thành 28 ko nhỉ, số xấu quá)

b.

\(4x=5y\Rightarrow\dfrac{x}{5}=\dfrac{y}{4}=\dfrac{3x}{15}=\dfrac{-2y}{-8}=\dfrac{3x-2y}{15-8}=\dfrac{35}{7}=5\)

\(\Rightarrow\left\{{}\begin{matrix}x=5.5=25\\y=4.2=20\end{matrix}\right.\)

c.

\(\dfrac{x}{-3}=\dfrac{y}{-7}=\dfrac{2x}{-6}=\dfrac{4y}{-28}=\dfrac{2x+4y}{-6-28}=\dfrac{68}{-34}=-2\)

\(\Rightarrow\left\{{}\begin{matrix}x=-3.\left(-2\right)=6\\y=-7.\left(-2\right)=14\end{matrix}\right.\)

d.

\(\dfrac{x}{2}=\dfrac{y}{-3}=\dfrac{z}{4}=\dfrac{4x}{8}=\dfrac{-3y}{9}=\dfrac{-2z}{-8}=\dfrac{4x-3y-2z}{8+9-8}=\dfrac{16}{9}\)

\(\Rightarrow\left\{{}\begin{matrix}x=2.\dfrac{16}{9}=\dfrac{32}{9}\\y=-3.\dfrac{16}{9}=-\dfrac{48}{9}\\z=4.\dfrac{16}{9}=\dfrac{64}{9}\end{matrix}\right.\)

4 tháng 10 2021

\(\dfrac{x}{7}=\dfrac{y}{13}\)

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\dfrac{x}{7}=\dfrac{y}{13}=\dfrac{x+y}{7+13}=\dfrac{40}{20}=2\)

\(\left\{{}\begin{matrix}x=2.7=14\\y=2.13=26\end{matrix}\right.\)

4 tháng 10 2021

Áp dụng dãy tỉ số bằng nhau, ta có:

\(\dfrac{x+y}{7+13}=\dfrac{40}{20}=2\)

=> \(\dfrac{x}{7}=\dfrac{y}{13}=2\)

=> \(\left\{{}\begin{matrix}x=14\\y=26\end{matrix}\right.\)

10 tháng 10 2021

\(\dfrac{x}{2}=\dfrac{y}{4};\dfrac{y}{5}=\dfrac{z}{3}\Rightarrow\dfrac{x}{10}=\dfrac{y}{20}=\dfrac{z}{12}\)

Áp dụng t/c của dãy số bằng nhau, ta có: \(\dfrac{x-y+z}{10-20+12}=\dfrac{4}{2}=2\)

\(\dfrac{x}{10}=2\Rightarrow x=20\)

\(\dfrac{y}{20}=2\Rightarrow y=40\)

\(\dfrac{z}{12}=2\Rightarrow z=24\)

10 tháng 10 2021

x/10=y/20=z/12

x-y+z/=10-20+12=4/2=2

x=2.10=20

y=2.20=40

z=2.12=24

30 tháng 7 2023

a,x.y=3=1x3=3x1=-1x(-3)=-3x(-1).

Vậy (x,y)=(1,3)=(3,1)=(-1,-3)=(-3,-1)

b,x.(y+1)=5=1x5=5x1=-1x(-5)=-5x(-1)

=>

       x       1          5       -1       -5
      y+1       5          1       -5       -1
       y       4          0        -6       -2

Vậy (x,y)=(1,4)=(5,0)=(-1,-6)=(-1,-2).

c,(x-2)(y+3)=7=1x7=7x1=-1x(-7)=-7(-1)

=>

       x-2        1           7         -1         -7
      y+3        7          1         -7         -1
       x       3          9         1        -5
      y        4         -2         -10         -4

Vậy (x,y)=(3,4)=(9,-2)=(1,-10)=(-5,-4).

20 tháng 10 2021

Áp dụng t/c dtsbn:

\(\dfrac{x}{15}=\dfrac{y}{7}=\dfrac{z}{3}=\dfrac{t}{1}=\dfrac{x-y+z-t}{15-7+3-1}=\dfrac{10}{10}=1\)

\(\Rightarrow\left\{{}\begin{matrix}x=15\\y=7\\z=3\\t=1\end{matrix}\right.\)

17 tháng 2 2022

\(\dfrac{x}{2}=\dfrac{z}{3};\dfrac{y}{5}=\dfrac{z}{2}\Rightarrow\dfrac{x}{4}=\dfrac{z}{6}=\dfrac{y}{15}\)

Theo tc dãy tỉ số bằng nhau 

\(\dfrac{x}{4}=\dfrac{z}{6}=\dfrac{y}{15}=\dfrac{x+y+z}{4+6+15}=\dfrac{50}{25}=2\Rightarrow x=8;y=12;y=30\)

NV
20 tháng 1

Áp dụng dãy tỉ số bằng nhau:

b.

\(\dfrac{x}{2}=\dfrac{y}{-5}=\dfrac{x-y}{2-\left(-5\right)}=\dfrac{-7}{7}=-1\)

\(\Rightarrow\left\{{}\begin{matrix}x=2.\left(-1\right)=-2\\y=-5.\left(-1\right)=5\end{matrix}\right.\)

d.

\(\dfrac{4}{x}=\dfrac{7}{y}\Rightarrow\dfrac{y}{7}=\dfrac{x}{4}=\dfrac{y-x}{7-4}=\dfrac{-12}{3}=-4\)

\(\Rightarrow\left\{{}\begin{matrix}x=4.\left(-4\right)=-16\\y=7.\left(-4\right)=-28\end{matrix}\right.\)

16 tháng 8 2023

gợi ý nè:

thử cộng chúng lại xem

16 tháng 8 2023

\(\dfrac{x}{y+z+1}\) = \(\dfrac{y}{x+z+2}\) = \(\dfrac{z}{x+y-3}\) = \(x+y+z\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{x}{y+z+1}\)=\(\dfrac{y}{x+z+2}\)=\(\dfrac{z}{x+y-3}\)=\(\dfrac{x+y+z}{y+z+1+x+z+2+x+y-3}\)

\(x+y+z\) = \(\dfrac{x+y+z}{2.\left(x+y+z\right)}\) = \(\dfrac{1}{2}\) (1)

\(\dfrac{x}{y+z+1}\) = \(\dfrac{1}{2}\) ⇒ 2\(x\) = y+z+1 

⇒ 2\(x\) + \(x\) = \(x+y+z+1\) (2)

 Thay (1) vào (2) ta có: 2\(x\) + \(x\) = \(\dfrac{1}{2}\) + 1

                                      3\(x\)      = \(\dfrac{3}{2}\) ⇒ \(x=\dfrac{1}{2}\)

\(\dfrac{y}{x+z+2}\) = \(\dfrac{1}{2}\) ⇒ 2y = \(x+z+2\) ⇒ 2y+y = \(x+y+z+2\) (3)

Thay (1) vào (3) ta có: 2y + y = \(\dfrac{1}{2}\) + 2 

                                   3y = \(\dfrac{5}{2}\) ⇒ y = \(\dfrac{5}{6}\)

Thay \(x=\dfrac{1}{2};y=\dfrac{5}{6}\) vào (1) ta có: \(\dfrac{1}{2}+\dfrac{5}{6}+z\) = \(\dfrac{1}{2}\)

                                                              \(\dfrac{5}{6}\) + z = 0 ⇒ z = - \(\dfrac{5}{6}\)

Kết luận: (\(x;y;z\)) = (\(\dfrac{1}{2}\); \(\dfrac{5}{6}\); - \(\dfrac{5}{6}\))