\(\frac{1}{x-1}+\frac{1}{\left(1-x\right)\left(2-x\right)}...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(=\dfrac{1}{x-1}+\dfrac{1}{\left(x-1\right)\left(x-2\right)}+\dfrac{1}{\left(x-2\right)\left(x-3\right)}\)

\(=\dfrac{1}{x-1}+\dfrac{1}{x-1}-\dfrac{1}{x-2}+\dfrac{1}{x-2}-\dfrac{1}{x-3}\)

\(=\dfrac{2}{x-1}-\dfrac{1}{x-3}\)

\(=\dfrac{2x-6-x+1}{\left(x-1\right)\left(x-3\right)}=\dfrac{x-5}{\left(x-1\right)\left(x-3\right)}\)

b: \(=\dfrac{x^2-2x+4}{x+2}-\left(x+2\right)\)

\(=\dfrac{x^2-2x+4-x^2-4x-4}{x+2}=\dfrac{-6x}{x+2}\)

c: \(=\dfrac{1-x+2x}{\left(1-x\right)\left(1+x\right)}\cdot\dfrac{1-x}{x}\)

\(=\dfrac{x+1}{x+1}\cdot\dfrac{1}{x}=\dfrac{1}{x}\)

d: \(=\dfrac{x^2+2x+1-x^2+2x-1}{\left(x-1\right)\left(x+1\right)}:\left(\dfrac{1}{x+1}+\dfrac{x}{x-1}+\dfrac{2}{\left(x-1\right)\left(x+1\right)}\right)\)

\(=\dfrac{4x}{\left(x-1\right)\left(x+1\right)}:\dfrac{x-1+x^2+x+2}{\left(x-1\right)\left(x+1\right)}\)

\(=\dfrac{4x}{x^2+2x+1}\)

8 tháng 11 2017

a)Ta có : \(\dfrac{x+1}{1-x}\)( giữ nguyên )

\(\dfrac{x^2-2}{1-x}\)( giữ nguyên )

\(\dfrac{2x^2-x}{x-1}=\dfrac{x-2x^2}{1-x}\)

b)Ta có : \(\dfrac{1}{x-1}=\dfrac{x^2+x+1}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{x^2+x+1}{x^3-1}\)

\(\dfrac{2x}{x^2+x+1}=\dfrac{2x\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{2x^2-2x}{x^3-1}\)

\(\dfrac{2x-3x^2}{x^3-1}\)(giữ nguyên )

c) MTC = ( x+ 2)2(x - 2)2

Do đó , ta có : \(\dfrac{1}{x^2+4x+4}=\dfrac{1}{\left(x+2\right)^2}=\dfrac{\left(x-2\right)^2}{\left(x+2\right)^2\left(x-2\right)^2}\)

\(\dfrac{1}{x^2-4x+4}=\dfrac{1}{\left(x-2\right)^2}=\dfrac{\left(x+2\right)^2}{\left(x-2\right)^2\left(x+2\right)^2}\)

\(\dfrac{x}{x^2-4}=\dfrac{x}{\left(x+2\right)\left(x-2\right)}=\dfrac{x\left(x^2-2^2\right)}{\left(x+2\right)^2\left(x-2\right)^2}=\dfrac{x^3-4x}{\left(x+2\right)^2\left(x-2\right)^2}\)

8 tháng 11 2017

d) MTC = xyz( x - y)( y - z)( x - z)

Do đó , ta có : \(\dfrac{1}{x\left(x-y\right)\left(x-z\right)}=\dfrac{yz\left(y-z\right)}{xyz\left(x-y\right)\left(y-z\right)\left(x-z\right)}\)

\(\dfrac{1}{y\left(y-x\right)\left(y-z\right)}=\dfrac{-xz\left(x-z\right)}{xyz\left(x-y\right)\left(y-z\right)\left(x-z\right)}\)

\(\dfrac{1}{z\left(z-x\right)\left(z-y\right)}=\dfrac{xy\left(x-y\right)}{xyz\left(x-y\right)\left(y-z\right)\left(x-z\right)}\)

Cộng các phân thức lại ta có :

\(\dfrac{yz\left(y-z\right)}{xyz\left(x-y\right)\left(y-z\right)\left(x-z\right)}\)+\(\dfrac{-xz\left(x-z\right)}{xyz\left(x-y\right)\left(y-z\right)\left(x-z\right)}\)+\(\dfrac{xy\left(x-y\right)}{xyz\left(x-y\right)\left(y-z\right)\left(x-z\right)}\)

= \(\dfrac{yz\left(y-z\right)-xz\left(x-z\right)+xy\left(x-y\right)}{xyz\left(x-y\right)\left(y-z\right)\left(x-z\right)}\)

28 tháng 3 2020

c, ĐKXĐ : \(\left\{{}\begin{matrix}x-1\ne0\\x-3\ne0\end{matrix}\right.\) => \(\left\{{}\begin{matrix}x\ne1\\x\ne3\end{matrix}\right.\)

- Ta có : \(\frac{6}{x-1}-\frac{4}{x-3}=\frac{8}{2x-6}\)

=> \(\frac{12\left(x-3\right)}{2\left(x-1\right)\left(x-3\right)}-\frac{8\left(x-1\right)}{2\left(x-3\right)\left(x-1\right)}=\frac{8\left(x-1\right)}{2\left(x-3\right)\left(x-1\right)}\)

=> \(12\left(x-3\right)-8\left(x-1\right)=8\left(x-1\right)\)

=> \(12x-36-8x+8-8x+8=0\)

=> \(-4x-20=0\)

=> \(x=-5\) ( TM )

Vậy phương trình trên có tập nghiệm là \(S=\left\{-5\right\}\)

b, ĐKXĐ : \(\left\{{}\begin{matrix}x\ne0\\2x-3\ne0\end{matrix}\right.\) => \(\left\{{}\begin{matrix}x\ne0\\x\ne\frac{3}{2}\end{matrix}\right.\)

Ta có : \(\frac{1}{2x-3}-\frac{3}{x\left(2x-3\right)}=\frac{5}{x}\)

=> \(\frac{x}{x\left(2x-3\right)}-\frac{3}{x\left(2x-3\right)}=\frac{5\left(2x-3\right)}{x\left(2x-3\right)}\)

=> \(x-3=5\left(2x-3\right)\)

=> \(x-3-10x+15=0\)

=> \(-9x=-12\)

=> \(x=\frac{4}{3}\) ( TM )

Vậy phương trình trên có nghiệm là \(S=\left\{\frac{4}{3}\right\}\)

28 tháng 3 2020

\(a,\frac{1}{x+1}-\frac{5}{x-2}=\frac{15}{\left(x+1\right)\left(2-x\right)}\) \(Đkxđ:\left\{{}\begin{matrix}x\ne-1\\x\ne2\end{matrix}\right.\)

\(\Leftrightarrow\frac{2-x}{\left(x+1\right)\left(2-x\right)}+\frac{5x+5}{\left(2-x\right)\left(x+1\right)}=\frac{15}{\left(x+1\right)\left(2-x\right)}\)

\(\Leftrightarrow2-x+5x+5=15\)

\(\Leftrightarrow7+4x=15\)

\(\Leftrightarrow4x=8\)

\(\Leftrightarrow x=2\)

\(\Leftrightarrow Ptvn\)

\(b,\frac{1}{2x-3}-\frac{3}{x\left(2x-3\right)}=\frac{5}{x}\) \(Đkxđ:\left\{{}\begin{matrix}x\ne0\\x\ne\frac{3}{2}\end{matrix}\right.\)

\(\Leftrightarrow\frac{x}{x\left(2x-3\right)}-\frac{3}{x\left(2x-3\right)}=\frac{10x-15}{x\left(2x-3\right)}\)

\(\Leftrightarrow x-3=10x-15\)

\(\Leftrightarrow x-3-10x+15=0\)

\(\Leftrightarrow-9x+12=0\)

\(\Leftrightarrow-9x=-12\)

\(\Leftrightarrow\frac{4}{3}\)

\(c,\frac{6}{x-1}-\frac{4}{x-3}=\frac{8}{2x-6}\) \(Đkxđ:\left\{{}\begin{matrix}x\ne1\\x\ne3\end{matrix}\right.\)

\(\Leftrightarrow\frac{6x-18}{\left(x-1\right)\left(x-3\right)}-\frac{4x-4}{\left(x-1\right)\left(x-3\right)}=\frac{4x-4}{\left(x-1\right)\left(x-3\right)}\)

\(\Leftrightarrow6x-18-4x+4=4x-4\)

\(\Leftrightarrow2x-14=4x-4\)

\(\Leftrightarrow-2x=10\)

\(\Leftrightarrow x=-5\)

\(d,\frac{3}{\left(x-1\right)\left(x-2\right)}+\frac{2}{\left(x-3\right)\left(x-1\right)}=\frac{1}{\left(x-2\right)\left(x-3\right)}\) \(Đkxđ:\left\{{}\begin{matrix}x\ne1\\x\ne2\\x\ne3\end{matrix}\right.\)

\(\Leftrightarrow\frac{3x-9}{\left(x-1\right)\left(x-2\right)\left(x-3\right)}+\frac{2x-4}{\left(x-1\right)\left(x-2\right)\left(x-3\right)}=\frac{x-1}{\left(x-1\right)\left(x-2\right)\left(x-3\right)}\)

\(\Leftrightarrow3x-9+2x-4=x-1\)

\(\Leftrightarrow4x-12=0\)

\(\Leftrightarrow4x=12\)

\(\Leftrightarrow x=3\)

\(\Leftrightarrow Ptvn\)

Vậy .................................

27 tháng 7 2017

\(a,\left(x+1\right)^2-\left(x-1\right)^2-3\left(x+1\right)\left(x-1\right)\)

\(=x^2+2x+1-\left(x^2-2x+1\right)-3\left(x^2-1\right)\)

\(=x^2+2x+1-x^2+2x-1-3x^2+2=-3x^2+4x+2\)\(b,5\left(x+2\right)\left(x-2\right)-\left(2x-3\right)^2-x^2+17\)

\(=5\left(x^2-4\right)-\left(4x^2-12x+9\right)-x^2+17\)

\(=5x^2-20-4x^2+12x-9-x^2+17=12x-12\)

a) ĐKXĐ: \(x\ne-1;x\ne2\)

Ta có: \(\frac{1}{x+1}-\frac{5}{x-2}=\frac{15}{\left(x+1\right)\left(2-x\right)}\)

\(\frac{1}{x+1}-\frac{5}{x-2}+\frac{15}{\left(x+1\right)\left(x-2\right)}=0\)

\(\frac{x-2}{\left(x+1\right)\left(x-2\right)}-\frac{5\left(x+1\right)}{\left(x-2\right)\left(x+1\right)}+\frac{15}{\left(x+1\right)\left(x-2\right)}=0\)

\(x-2-5x-5+15=0\)

\(-4x+8=0\)

\(-4x=-8\)

\(x=\frac{-8}{-4}=2\)(loại)

Vậy: x không có giá trị

b) ĐKXĐ: \(x\ne0;x\ne\frac{3}{2}\)

Ta có: \(\frac{1}{2x-3}-\frac{3}{x\left(2x-3\right)}=\frac{5}{x}\)

\(\frac{x}{\left(2x-3\right)\cdot x}-\frac{3}{x\left(2x-3\right)}-\frac{5\left(2x-3\right)}{x\left(2x-3\right)}=0\)

\(x-3-10x+15=0\)

\(-9x+12=0\)

\(-9x=-12\)

\(x=\frac{-12}{-9}=\frac{4}{3}\)

Vậy: \(x=\frac{4}{3}\)

c) ĐKXĐ:\(x\ne3;x\ne1\)

Ta có: \(\frac{6}{x-1}-\frac{4}{x-3}=\frac{8}{2x-6}\)

\(\frac{6}{x-1}-\frac{4}{x-3}=\frac{8}{2\left(x-3\right)}\)

\(\frac{6}{x-1}-\frac{4}{x-3}=\frac{4}{x-3}\)

\(\frac{6}{x-1}-\frac{4}{x-3}-\frac{4}{x-3}=0\)

\(\frac{6}{x-1}-\frac{8}{x-3}=0\)

\(\frac{6\left(x-3\right)}{\left(x-1\right)\left(x-3\right)}-\frac{8\left(x-1\right)}{\left(x-3\right)\left(x-1\right)}=0\)

\(6\left(x-3\right)-8\left(x-1\right)=0\)

⇔6x-18-8x+8=0

⇔-2x-10=0

⇔-2(x+5)=0

Vì 2≠0 nên x+5=0

hay x=-5

Vậy: x=-5

4 tháng 3 2020

b) \(\frac{x+2}{x-2}-\frac{1}{x}=\frac{2}{x\left(x-2\right)}\)

<=> \(\frac{x\left(x+2\right)}{x\left(x-2\right)}-\frac{1\left(x-2\right)}{x\left(x-2\right)}=\frac{2}{x\left(x-2\right)}\)

<=> x2+2x-x+2=2

<=> x2+x=2-2

<=> x2+x=0

<=>x(x+1)=0

<=>x=0 hoặc x+1=0

<=>x=0 hoặc x = -1

4 tháng 3 2020

a) \(\frac{1}{2x-3}-\frac{3}{x\left(2x-3\right)}=\frac{5}{x}\)

<=>\(\frac{1.x}{x\left(2x-3\right)}-\frac{3}{x\left(2x-3\right)}=\frac{5\left(2x-3\right)}{x\left(2x-3\right)}\)

<=> x-3 =10x-15

<=> x-10x= -15+3

<=> -9x = -12

<=> x = \(\frac{-12}{-9}\)

<=> x = \(\frac{4}{3}\)

AH
Akai Haruma
Giáo viên
30 tháng 12 2019

Lời giải:

a)

\(\frac{1}{(1-x)(2-x)}+\frac{2}{(2-x)(3-x)}+\frac{3}{(1-x)(x-3)}=\frac{1}{(x-1)(x-2)}+\frac{2}{(x-2)(x-3)}-\frac{3}{(x-1)(x-3)}\)

\(=\frac{x-3}{(x-1)(x-2)(x-3)}+\frac{2(x-1)}{(x-1)(x-2)(x-3)}-\frac{3(x-2)}{(x-1)(x-2)(x-3)}\)

\(=\frac{x-3+2(x-1)-3(x-2)}{(x-1)(x-2)(x-3)}=\frac{1}{(x-1)(x-2)(x-3)}\)

b)

\(\frac{x^2}{x+1}+\frac{2x}{x^2-1}-\frac{1}{1-x}+1=\frac{x^2}{x+1}+\frac{2x}{x^2-1}+\frac{1}{x-1}+1\)

\(=\frac{x^2}{x+1}+\frac{2x}{x^2-1}+\frac{x}{x-1}=\frac{x^2(x-1)}{(x+1)(x-1)}+\frac{2x}{(x-1)(x+1)}+\frac{x(x+1)}{(x-1)(x+1)}\)

\(=\frac{x^3+3x}{(x-1)(x+1)}=\frac{x^3+3x}{x^2-1}\)

c)

\(\frac{1}{x^3-x}-\frac{1}{x(x-1)}+\frac{2}{x^2-1}=\frac{1}{x(x-1)(x+1)}-\frac{x+1}{x(x-1)(x+1)}+\frac{2x}{x(x-1)(x+1)}\)

\(=\frac{x}{x(x-1)(x+1)}=\frac{1}{(x-1)(x+1)}=\frac{1}{x^2-1}\)

AH
Akai Haruma
Giáo viên
23 tháng 12 2019