Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) số nguyên a phải có điều kiện gì để ta có phân số ?
a) \(\frac{32}{a-1}\)
Để ta có phân số thì \(_{a-1\ne0}\).
Kết hợp với điều kiện a là số nguyên theo đầu bài ta tìm được a là số nguyên khác 1 .
Vậy với \(_{a\ne1}\)thì \(_{\frac{32}{a-1}}\)là phân số.
b)\(\frac{a}{5a+30}\)=\(\frac{a}{5\left(a+6\right)}\)
Điều kiện để 5(a+6) là phân số là:
\(_{a+6\ne0\Leftrightarrow a\ne-6}\)
Vậy với \(_{a\ne6}\)thì \(_{\frac{a}{5a+30}}\)là phân số.
2) tìm các số nguyên x để các phân số sau là số nguyên :
a) \(\frac{13}{x-1}\)
Để \(_{\frac{13}{x-1}}\) là số nguyên thì 13 phải chia hết cho x-1.nghĩa là :
x-1 thuộc (+-1,+-13)
=>x thuộc (0,2,-12,14)
Vậy x thuộc (0,2,-12,14)thì 13/x-1 là số nguyên
b) \(\frac{x+3}{x-2}\)
Ta có :
\(_{\frac{x+3}{x-2}}\)= \(_{\frac{x-2+5}{x-2}}\)= \(_{\frac{1+5}{x-2}}\)
để \(_{\frac{x+3}{x-2}}\) là số nguyên thì \(_{\frac{5}{x-2}}\) là số nguyên .
Nghĩa là 5 chia hết cho x-2,hay x-2 thuộc (+-1,+-5)
=>x thuộc (1,3,-3,8)
Vậy x thuộc (1,3-3,8) thì \(_{\frac{x+3}{x-2}}\)là số nguyên.
1.a.a+1 chia hết cho 3 thì a chia 3 dư 2
b.a-2 chia hết cho 5 thì a chia 5 dư 3
2.a,13 chia hết cho (x-1)
suy ra (x-1) thuộc Ư(13)={-13;-1;1;13}
suy ra x thuộc {-12;0;2;14}
b,x-3/x-2=x-2-1/x-2=1-1/x-2
để phân thức trên nguyên thì 1 chia hết cho x-2
suy ra x-2 thuộc {-1;1}
suy ra x=1;3
2) tìm các số nguyên x để các phân số sau là số nguyên :
a) 13/x -1
Để 13/x-1 là số nguyên thì 13 phải chia hết cho x-1.nghĩa là :
x-1 thuộc (+-1,+-13)
=>x thuộc (0,2,-12,14)
vậy x thuộc (0,2,-12,14)thì 13/x-1 là số nguyên
b) x+ 3 /x-2
ta có x+3/x-2=x-2+5/x-2=1+5/x-2
để x+3/x-2 là số nguyên thì 5/x-2 là số nguyên .
nghĩa là 5 chia hết cho x-2,hay x-2 thuộc (+-1,+-5)
=>x thuộc (1,3,-3,8)
vậy x thuộc (1,3-3,8) thì x+3/x-2 là số nguyên
a) Để \(\frac{a+1}{3}\)là số nguyên thì a+1 chia hết cho 3
=> a+1 thuộc B (3)={0;3;6;9;....}
=> a={-1;2;5;8;....}
b) Để \(\frac{a-2}{5}\)là số nguyên thì a-2 chia hết cho 5
=> a-2 thuộc B (5)={0;5;10;...}
=> a={2;7;12;....}
5/a,
ta cần c/m: a/b=a +c/b+d
<=> a(b+d) = b(a+c)
ab+ad = ba+bc
ab-ba+ad=bc
ad=bc
a/b=c/d
vậy đẳng thức được chứng minh
b, Tương tự
a) Để \(\frac{13}{x-1}\)là số nguyên
\(\Rightarrow\)\(13⋮x-1\)\(\Rightarrow\)\(x-1\inƯ\left(13\right)\in\left\{\pm1;\pm13\right\}\)
- Ta có bảng giá trị:
\(x-1\) | \(-1\) | \(1\) | \(-13\) | \(13\) |
\(x\) | \(0\) | \(2\) | \(-12\) | \(14\) |
\(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) |
Vậy \(x\in\left\{-12,0,2,14\right\}\)
b) Ta có: \(x-3=\left(x-2\right)-1\)
- Để \(\frac{x-3}{x-2}\)là số nguyên
\(\Rightarrow\)\(x-3⋮x-2\)\(\Leftrightarrow\)\(\left(x-2\right)-1⋮x-2\)mà \(x-2⋮x-2\)
\(\Rightarrow\)\(1⋮x-2\)\(\Rightarrow\)\(x-2\inƯ\left(1\right)\in\left\{\pm1\right\}\)
+ \(x-2=1\)\(\Leftrightarrow\)\(x=1+2=3\left(TM\right)\)
+ \(x-2=-1\)\(\Leftrightarrow\)\(x=-1+2=1\left(TM\right)\)
Vậy \(x\in\left\{1,3\right\}\)
!!@@# ^_^Chúc bn hok tốt^_^ #@@!!
2) tìm các số nguyên x để các phân số sau là số nguyên :
a) 13/x -1
Để 13/x-1 là số nguyên thì 13 phải chia hết cho x-1.nghĩa là :
x-1 thuộc (+-1,+-13)
=>x thuộc (0,2,-12,14)
vậy x thuộc (0,2,-12,14)thì 13/x-1 là số nguyên
b) x+ 3 /x-2
ta có x+3/x-2=x-2+5/x-2=1+5/x-2
để x+3/x-2 là số nguyên thì 5/x-2 là số nguyên .
nghĩa là 5 chia hết cho x-2,hay x-2 thuộc (+-1,+-5)
=>x thuộc (1,3,-3,8)
vậy x thuộc (1,3-3,8) thì x+3/x-2 là số nguyên