Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu2:
Q = \(\frac{3}{3}-\frac{3}{5}+\frac{3}{5}-\frac{3}{7}+...+\frac{3}{47}-\frac{3}{49}\)
= \(\frac{3}{3}-\frac{3}{49}=\frac{46}{49}\)
Bạn ghi sai đề phải không.Sửa lại đề rồi mình làm giúp cho
gọi d là ƯC(3n-2; 4n-3)
\(\Rightarrow\hept{\begin{cases}3n-2⋮d\\4n-3⋮d\end{cases}}\Rightarrow\hept{\begin{cases}4\left(3n-2\right)⋮d\\3\left(4n-3\right)⋮d\end{cases}}\Rightarrow\hept{\begin{cases}12n-8⋮d\\12n-9⋮d\end{cases}}\)
\(\Rightarrow\) \(\left(12n-8\right)-\left(12n-9\right)\) \(⋮\) \(d\)
\(\Rightarrow\) \(12n-8-12n+9\) \(⋮\) \(d\)
\(\Rightarrow\) \(\left(12n-12n\right)+\left(9-8\right)\) \(⋮\) \(d\)
\(\Rightarrow\) \(0+1\) \(⋮\) \(d\)
\(\Rightarrow\) \(1\) \(⋮\) \(d\)
\(\Rightarrow\) \(d\inƯ\left(1\right)=1\)
\(\Rightarrow\) \(\text{3n-2 và 4n - 3 là 2 số nguyên tố cùng nhau}\)
\(\Rightarrow\) \(\frac{3n-2}{4n-3}\) là phân số tối giản
1/ Đặt ƯCLN(3n - 2; 4n - 3) = d
=> \(3n-2⋮d\)và \(4n-3⋮d\)
hay \(4.\left(3n-2\right)⋮d\)và \(3.\left(4n-3\right)⋮d\)
hay \(12n-8⋮d\)và \(12n-9⋮d\)
\(\Leftrightarrow\left(12n-8\right)-\left(12n-9\right)⋮d\)
\(\Leftrightarrow12n-8-12n+9⋮d\)
\(\Leftrightarrow-8+9⋮d\)
Vậy \(1⋮d\)hay \(d\inƯ\left(1\right)=\left\{1\right\}\)
=> 3n - 2 và 4n - 3 là 2 số nguyên tố cùng nhau
=> phân số \(\frac{3n-2}{4n-3}\)tối giản.
\(\frac{a}{2}+\frac{b}{3}=\frac{a+b}{5}\)
\(\frac{3a+2b}{6}=\frac{a+b}{5}\)
\(5\left(3a+2b\right)=6\left(a+b\right)\)
\(15a+10b=6a+6b\)
\(9a+4b+6a+6b=6a+6b\)
\(9a+4b=0\) ( trừ cả hai vế của đẳng thức cho \(6a+6b\) )
Vì \(a\ge0;b\ge0\) ( a và b là các số tự nhiên )
\(\Rightarrow9a\ge0;4b\ge0\Rightarrow9a+4b\ge0\)
Để \(9a+4b=0\Leftrightarrow\orbr{\begin{cases}9a=0\\4b=0\end{cases}\Rightarrow\orbr{\begin{cases}a=0\\b=0\end{cases}}}\)
Vậy có 1 cặp số tự nhiên ( a;b ) là ( 0;0 )
\(\frac{a}{2}+\frac{b}{3}=\frac{a+b}{5}\)
\(\Leftrightarrow\frac{3a+2b}{6}=\frac{a+b}{5}\)
\(\Leftrightarrow5\left(3a+2b\right)=6\left(a+b\right)\)
\(\Leftrightarrow15a+10b=6a+6b\)
\(\Leftrightarrow\left(6a+6b\right)+9a+4b=6a+6b\)
\(\Leftrightarrow9a+4b=0\)
Ta thấy : \(a\ge0;b\ge0\) ( vì là số tự nhiên )
\(\Rightarrow9a\ge0;\ge4b\ge0\)
\(\Rightarrow9a+4b\ge0\)
Mà \(9a+4b=0\) nên \(\hept{\begin{cases}9a=0\\4b=0\end{cases}\Rightarrow\hept{\begin{cases}a=0\\b=0\end{cases}}}\)
Vậy có 1 cặp số tự nhiên (a ; b) là (0 ; 0)