K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 6 2017

Goi a là số chia hết cho 3
số 2 liên tiếp của nó sẽ là a+1 và a+2 hiển nhiên không chia hết dư 1 hoặc dư 2
Xét tích
Trường hợp 1
\(a\left(a+1\right)⋮3\) ( vì \(a⋮3\)
Trường hợp 2
\(\left(a+1\right)\left(a+2\right)=\left(a^2+3a+2\right)\) thì ta thấy ngay nếu lấy \(a^2+ 3a+2\) chia cho 3 thì sẽ dư ra 2.

Vì số 350 + 1 chia cho 3 dư 1 nên nó không thể là tích của hai số tự nhiên liên tiếp

18 tháng 7 2017

a, Theo bài ra ta có:

\(=x^3-x-2x+2\)

\(=x\left(x^2-1\right)-2\left(x-1\right)\)

\(=x\left(x+1\right)\left(x-1\right)-2\left(x-1\right)\)

\(=\left(x-1\right)\left(x^2+x-2\right)\)

b, theo bài ra ta có:

\(=x^3-3x^2-\left(2x^2-6x\right)-\left(3x-9\right)\)

\(=x^2\left(x-3\right)-2x\left(x-3\right)-3\left(x-3\right)\)

\(=\left(x^2-2x-3\right)\left(x-3\right)\)

c,Theo bài ra ta có:

\(=x^3+5x^2+3x^2+15x+2x+10\)

\(=x^2\left(x+5\right)+3x\left(x+5\right)+2\left(x+5\right)\)

\(=\left(x+5\right)\left(x^2+3x+2\right)\)

\(=\left(x+5\right)\left(x^2+x+2x+2\right)=\left(x+5\right)\left(x\left(x+1\right)+2\left(x+1\right)\right)\)

\(=\left(x+5\right)\left(x+1\right)\left(x+2\right)\)

CHÚC BẠN HỌC TỐT...........

18 tháng 7 2017

a) \(x^3-3x+2\)

= \(x^3-x^2+x^2-x-2x+2\)

= \(x^2\left(x-1\right)+x\left(x-1\right)-2\left(x-1\right)\)

= \(\left(x-1\right)\left(x^2+x-2\right)\)

= \(\left(x-1\right)\left(x^2+2x-x-2\right)\)

= \(\left(x-1\right)\left[x\left(x+2\right)-\left(x+2\right)\right]\)

= \(\left(x-1\right)\left(x+2\right)\left(x-1\right)\)

= \(\left(x-1\right)^2\left(x+2\right)\)

b) \(x^3-5x^2+3x+9\)

= \(x^3+x^2-6x^2-6x+9x+9\)

= \(x^2\left(x+1\right)-6x\left(x+1\right)+9\left(x+1\right)\)

= \(\left(x+1\right)\left(x^2-6x+9\right)\)

= \(\left(x+1\right)\left(x-3\right)^2\)

c) \(x^3+8x^2+17x+10\)

= \(x^3+x^2+7x^2+7x+10x+10\)

= \(x^2\left(x+1\right)+7x\left(x+1\right)+10\left(x+1\right)\)

= \(\left(x+1\right)\left(x^2+7x+10\right)\)

= \(\left(x+1\right)\left(x^2+2x+5x+10\right)\)

= \(\left(x+1\right)\left[x\left(x+2\right)+5\left(x+2\right)\right]\)

= \(\left(x+1\right)\left(x+2\right)\left(x+5\right)\)

d) \(x^3-3x^2+6x+4\)

Câu này đúng là sai đề rồi, mình sửa + làm bên dưới:

\(x^3+3x^2+6x+4\)

= \(x^3+x^2+2x^2+2x+4x+4\)

= \(x^2\left(x+1\right)+2x\left(x+1\right)+4\left(x+1\right)\)

= \(\left(x+1\right)\left(x^2+2x+4\right)\)

Học tốt nhé :))

18 tháng 6 2017

\(\left(x+y+z\right)^2-2\left(x+y+z\right)\left(x+y\right)+\left(x+y\right)^2\)

= \(\left[\left(x+y+z\right)-\left(x+y\right)\right]^2\)

= \(z^2\)

18 tháng 6 2017

Ta có:(x + y + z)2 - 2(x + y + z) (x + y) + (x + y)2

=[(x+y+z)-(x+y)]2=z2

a: \(9x^2-6x+3\)

\(=\left(9x^2-6x+1\right)+2\)

\(=\left(3x-1\right)^2+2\ge2\)

b: \(6x-x^2+1\)

\(=-\left(x^2-6x-1\right)\)

\(=-\left(x^2-6x+9-10\right)\)

\(=-\left(x-3\right)^2+10\le10\)

5 tháng 7 2017

\(A=\left(x+1\right)^3-\left(x+3\right)^2\left(x+1\right)+4x^2+8\)

\(A=x^3+3x^2+3x+1-\left(x^2+6x+9\right)\left(x+1\right)+4x^2+8\)

\(A=x^3+3x^2+3x+1-\left(x^3+6x^2+9x+x^2+6x+9\right)+4x^2+8\)

\(A=x^3+3x^2+3x+1-x^3-6x^2-9x-x^2-6x-9+4x^2+8\)

\(A=\left(x^3-x^3\right)+\left(3x^2-6x^2-x^2+4x^2\right)+\left(3x-9x-6x\right)+\left(1-9+8\right)\)

\(A=-12x\)

\(B=\left(x-2\right)\left(x^2+2x+4\right)-\left(x+1\right)^3+3\left(x-1\right)\left(x+1\right)\)

\(B=x^3+2x^2+4x-2x^2-4x-8-\left(x^3+3x^2+3x+1\right)+3\left(x^2-1\right)\)

\(B=x^3+2x^2+4x-2x^2-4x-8-x^3-3x^2-3x-1+3x^2-3\)

\(B=\left(x^3-x^3\right)+\left(2x^2-2x^2-3x^2+3x^2\right)+\left(4x-4x-3x\right)+\left(-8-3-1\right)\)

\(B=-3x-12\)

Câu C tương tự.

Chúc bạn học tốt!!!

5 tháng 7 2017

A = \(\left(x+1\right)^3-\left(x+3\right)^2.\left(x+1\right)+4x^2+8\)

A = \(\left(x+1\right)\left(x+1-x-3\right)\left(x+1+x+3\right)+4x^2+8\)

A = \(\left(x+1\right).\left(-2\right).\left(2x+4\right)+4x^2+8\)

A = \(\left(-2\right)\left(2x^2+4x+2x+4\right)+4x^2+8\)

A = \(\left(-2\right)\left(2x^2+6x+4\right)+4x^2+8\)

A = \(-4x^2-12x-8+4x^2+8=-12x\)

b) B = \(\left(x-2\right)\left(x^2+2x+4\right)-\left(x+1\right)^3+3\left(x-1\right)\left(x+1\right)\)

B = \(x^3-8-\left(x+1\right)\left(x^2+2x+1+3x-3\right)\)

B = \(x^3-8-\left(x+1\right)\left(x^2+5x-2\right)\)

B = \(x^3-8-x^3-5x^2+2x-x^2-5x+2\)

B = \(-6x^2-3x-6\)

22 tháng 9 2017

Sao bạn không tự làm bớt đi , bài dễ mà

13 tháng 8 2017

Sửa đề tí:

\(\dfrac{a}{x+1}+\dfrac{b}{x-2}=\dfrac{32x-19}{x^2-x-2}\)

\(\Leftrightarrow\dfrac{ax-2a}{x^2-x-2}+\dfrac{bx+b}{x^2-x-2}=\dfrac{32x-19}{x^2-x-2}\)

\(\Leftrightarrow ax-2a+bx+b=32x-19\)

\(\Rightarrow ax+bx=32x\)

\(\Rightarrow a+b=32\)

\(\Rightarrow b=32-a\)

\(\Rightarrow b-2a=-19\)

Hay \(32-a-2a=-19\)

\(\Leftrightarrow-3a=-51\)

\(\Leftrightarrow a=17\)

\(\Leftrightarrow b=15\)

Vậy tích của \(a.b\) là: \(a.b=17.15=255\)

14 tháng 8 2017

Zye Đặng Ừ á nhìn lộn =='

10 tháng 7 2017

Trong sách có mà bạn ( Ít nhất cũng thuộc chứ )

1. Bình phương của một tổng:

\(\left(a+b\right)^2=a^2+2ab+b^2\)

2. Bình phương của một hiệu:

\(\left(a-b\right)^2=a^2-2ab+b^2\)

3. Hiệu hai bình phương:

\(a^2-b^2=\left(a-b\right)\left(a+b\right)\)

4. Lập phương của một tổng:

\(\left(a+b\right)^3=a^3+3a^2b+3ab^2+b^3\)

5. Lập phương của một hiệu:

\(\left(a-b\right)^3=a^3-3a^2b+3ab^2-b^3\)

6. Tổng hai lập phương:

\(a^3+b^3=\left(a+b\right)\left(a^2-ab+b^2\right)=\left(a+b\right)^3-3a^2b-3ab^2=\left(a+b\right)^3-3ab\left(a+b\right)\)

7. Hiệu hai lập phương:

\(a^3-b^3=\left(a-b\right)\left(a^2+ab+b^2\right)=\left(a-b\right)^3+3a^2b-3ab^2=\left(a-b\right)^3+3ab\left(a-b\right)\)

Hok tốt

7 tháng 6 2017

a) Từ \(a+b+c=0\Rightarrow a^{2}+b^{2}+c^{2}+2(ab+bc+ca)=0\)

\(\Rightarrow ab+bc+ca=-1 \) (do \( a^{2}+b^{2}+c^{2}=2\))

\(\Rightarrow a^{2}b^{2}+b^{2}c^{2}+c^{2}a^{2}+2(a^{2}bc+ab^{2}c+abc^{2})=1\)

\(\Rightarrow a^{2}b^{2}+b^{2}c^{2}+c^{2}a^{2}+2abc(a+b+c)=1\)

\(\Rightarrow a^{2}b^{2}+b^{2}c^{2}+c^{2}a^{2}=1\) (1)

(do a+b+c=0)

Ta có: \(a^{2}+b^{2}+c^{2}=2\)

\(\Rightarrow a^{4}+b^{4}+c^{4}+2(a^{2}b^{2}+b^{2}c^{2}+c^{2}a^{2})=4\) (20

\((1)+(2)\Rightarrow a^{4}+b^{4}+c^{4}=2\)

b) Tương tự.

7 tháng 6 2017

tới bước 3 biến đỗi sao thế

20 tháng 11 2016

chịu