![](https://rs.olm.vn/images/avt/0.png?1311)
\(\sqrt{54a}\)+ \(\sqrt{16a}\)+
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời. a) \(\sqrt{7+4\sqrt{3}}=\sqrt{2^2+2.2.\sqrt{3}+\left(\sqrt{3}\right)^2}\) \(=\sqrt{\left(2+\sqrt{3}\right)^2}=2+\sqrt{3}\) b) \(\sqrt{13-4\sqrt{3}}=\sqrt{\left(2\sqrt{3}\right)^2-2.2\sqrt{3}+1}\) \(=\sqrt{\left(2\sqrt{3}-1\right)^2}=2\sqrt{3}-1\) c) \(\sqrt{5-2\sqrt{6}}=\sqrt{\left(\sqrt{3}\right)^2-2.\sqrt{3}.\sqrt{2}+\left(\sqrt{2}\right)^2}\) \(=\sqrt{\left(\sqrt{3}-\sqrt{2}\right)^2}=\sqrt{3}-\sqrt{2}\) d) \(\sqrt{3+2\sqrt{2}+\sqrt{6-4\sqrt{2}}}\) \(=\sqrt{3+2\sqrt{2}+\sqrt{\left(2-\sqrt{2}\right)^2}}\) \(=\sqrt{3+2\sqrt{2}+2-\sqrt{2}}\) \(=\sqrt{5+\sqrt{2}}\) e) \(2+\sqrt{17-4\sqrt{9+4\sqrt{5}}}\) \(=2+\sqrt{17-4\sqrt{\left(\sqrt{5}+2\right)^2}}\) \(=2+\sqrt{17-4\left(\sqrt{5}+2\right)}\) \(=2+\sqrt{9-4\sqrt{5}}\) \(=2+\sqrt{\left(\sqrt{5}-2\right)^2}\) \(=2+\sqrt{5}-2=\sqrt{5}\) f) đề sai nhé: \(\sqrt{3a}.\sqrt{12a}=\sqrt{36a^2}=6a\)\(\left(a\ge0\right)\) g) \(\sqrt{16a^2b^8}=4b^4\left|a\right|\) h) \(\sqrt{7a}.\sqrt{63a^3}=\sqrt{441.a^4}=21a^2\) 1. a) \(\sqrt{3-2\sqrt{2}}+\sqrt{6-4\sqrt{2}}+\sqrt{9-4\sqrt{2}}=\sqrt{2-2\sqrt{2}+1}+\sqrt{4-2.2.\sqrt{2}+2}+\sqrt{8-2.2\sqrt{2}.1+1}=\sqrt{\left(\sqrt{2}\right)^2-2.\sqrt{2}.1+1^2}+\sqrt{2^2-2.2.\sqrt{2}+\left(\sqrt{2}\right)^2}+\sqrt{\left(2\sqrt{2}\right)^2-2.2\sqrt{2}.1+1^2}=\sqrt{\left(\sqrt{2}-1\right)^2}+\sqrt{\left(2-\sqrt{2}\right)^2}+\sqrt{\left(2\sqrt{2}-1\right)^2}=\left|\sqrt{2}-1\right|+\left|2-\sqrt{2}\right|+\left|2\sqrt{2}-1\right|=\sqrt{2}-1+2-\sqrt{2}+2\sqrt{2}-1=2\sqrt{2}\) b) \(\sqrt{\left(4+\sqrt{10}\right)^2}-\sqrt{\left(4-\sqrt{10}\right)^2}=\left|4+\sqrt{10}\right|-\left|4-\sqrt{10}\right|=4+\sqrt{10}-4+\sqrt{10}=2\sqrt{10}\) c) \(\dfrac{1}{\sqrt{2013}-\sqrt{2014}}-\dfrac{1}{\sqrt{2014}-\sqrt{2015}}=\dfrac{\sqrt{2013}+\sqrt{2014}}{\left(\sqrt{2013}-\sqrt{2014}\right)\left(\sqrt{2013}+\sqrt{2014}\right)}-\dfrac{\sqrt{2014}+\sqrt{2015}}{\left(\sqrt{2014}-\sqrt{2015}\right)\left(\sqrt{2014}+\sqrt{2015}\right)}=\dfrac{\sqrt{2013}+\sqrt{2014}}{2013-2014}-\dfrac{\sqrt{2014}+\sqrt{2015}}{2014-2015}=-\left(\sqrt{2013}+\sqrt{2014}\right)+\sqrt{2014}+\sqrt{2015}=-\sqrt{2013}-\sqrt{2014}+\sqrt{2014}+\sqrt{2015}=\sqrt{2015}-\sqrt{2013}\) 2. a) \(x^2-2\sqrt{5}x+5=0\Leftrightarrow x^2-2.x.\sqrt{5}+\left(\sqrt{5}\right)^2=0\Leftrightarrow\left(x-\sqrt{5}\right)^2=0\Leftrightarrow x-\sqrt{5}=0\Leftrightarrow x=\sqrt{5}\)Vậy S={\(\sqrt{5}\)} b) ĐK:x\(\ge-3\) \(\sqrt{x+3}=1\Leftrightarrow\left(\sqrt{x+3}\right)^2=1^2\Leftrightarrow x+3=1\Leftrightarrow x=-2\left(tm\right)\) Vậy S={-2} 3. a) \(A=\dfrac{x-\sqrt{x}}{x+\sqrt{x}+1}-\dfrac{2x+\sqrt{x}}{\sqrt{x}}+\dfrac{2\left(x-1\right)}{\sqrt{x}-1}=\dfrac{\sqrt{x}\left(x\sqrt{x}-1\right)}{x+\sqrt{x}+1}-\dfrac{\sqrt{x}\left(2\sqrt{x}+1\right)}{\sqrt{x}}+\dfrac{2\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}-1}=\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{x+\sqrt{x}+1}-\left(2\sqrt{x}+1\right)+2\left(\sqrt{x}+1\right)=\sqrt{x}\left(\sqrt{x}-1\right)-2\sqrt{x}-1+2\sqrt{x}+2=x-\sqrt{x}+1\) b) Ta có \(A=x-\sqrt{x}+1=x-2\sqrt{x}.\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}=\left(\sqrt{x}-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\) Ta có \(\left(\sqrt{x}-\dfrac{1}{2}\right)^2\ge0\Leftrightarrow\left(\sqrt{x}-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\Leftrightarrow A\ge\dfrac{3}{4}\) Dấu bằng xảy ra khi x=\(\dfrac{1}{4}\) Vậy GTNN của A=\(\dfrac{3}{4}\) Bài 2: a: =>25x=35^2=1225 =>x=49 b: \(\Leftrightarrow2\sqrt{x+5}-3\sqrt{x+5}+\dfrac{4}{3}\cdot3\sqrt{x+5}=6\) \(\Leftrightarrow3\sqrt{x+5}=6\) =>x+5=4 =>x=-1 1) \(\sqrt{9a}-\sqrt{16a}+\sqrt{49a}\left(a\ge0\right)\)\(=3\sqrt{a}-4\sqrt{a}+7\sqrt{a}\) \(=6\sqrt{a}\) 2) \(2\sqrt{40\sqrt{12}}-2\sqrt{\sqrt{75}}-3\sqrt{5\sqrt{80}}\) = \(2\sqrt{80\sqrt{3}}-2\sqrt{5\sqrt{3}}-3\sqrt{20\sqrt{5}}\) = \(8\sqrt{5\sqrt{3}}-2\sqrt{5\sqrt{3}}-6\sqrt{5\sqrt{5}}\) = \(6\sqrt{5\sqrt{3}}-6\sqrt{5\sqrt{5}}\) 3) \(\dfrac{\sqrt{x^3}-1}{\sqrt{x}-1}\) = \(\dfrac{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{\sqrt{x}-1}\) = \(x+\sqrt{x}+1\) Bài 6: a: \(\Leftrightarrow\sqrt{x^2+4}=\sqrt{12}\) =>x^2+4=12 =>x^2=8 =>\(x=\pm2\sqrt{2}\) b: \(\Leftrightarrow4\sqrt{x+1}-3\sqrt{x+1}=1\) =>x+1=1 =>x=0 c: \(\Leftrightarrow3\sqrt{2x}+10\sqrt{2x}-3\sqrt{2x}-20=0\) =>\(\sqrt{2x}=2\) =>2x=4 =>x=2 d: \(\Leftrightarrow2\left|x+2\right|=8\) =>x+2=4 hoặcx+2=-4 =>x=-6 hoặc x=2 a: \(A=10\sqrt{x}-10\sqrt{x}-\dfrac{4}{3}\cdot\dfrac{x\sqrt{x}}{2}\) \(=-\dfrac{2}{3}x\sqrt{x}\) b: \(=\left(-\sqrt{5}-2\right)\left(\sqrt{5}-2\right)\) \(=-\left(5-4\right)=-1\)