Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, ĐKXĐ : \(\left[{}\begin{matrix}x\ge0\\ y>0\end{matrix}\right.\) hoặc \(\left[{}\begin{matrix}x>0\\y\ge0\end{matrix}\right.\)
Ta có :\(\frac{x\sqrt{x}+y\sqrt{y}}{\sqrt{x}+\sqrt{y}}-\left(\sqrt{x}-\sqrt{y}\right)^2\)
= \(\frac{\sqrt{x^2}\sqrt{x}+\sqrt{y^2}\sqrt{y}}{\sqrt{x}+\sqrt{y}}-\left(\sqrt{x}-\sqrt{y}\right)^2=\frac{\sqrt{x^3}+\sqrt{y^3}}{\sqrt{x}+\sqrt{y}}-\left(\sqrt{x}-\sqrt{y}\right)^2\)
= \(\frac{\left(\sqrt{x}+\sqrt{y}\right)\left(x-\sqrt{xy}+y\right)}{\sqrt{x}+\sqrt{y}}-\left(x-2\sqrt{xy}+y\right)\)
= \(\left(x-\sqrt{xy}+y\right)-\left(x-2\sqrt{xy}+y\right)\)
= \(x-\sqrt{xy}+y-x+2\sqrt{xy}-y\)
= \(\sqrt{xy}\)
\(\sqrt{\frac{\sqrt{a}-1}{\sqrt{b}+1}}:\sqrt{\frac{\sqrt{b}-1}{\sqrt{a}+1}}\) \(=\sqrt{\frac{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}{\left(\sqrt{b}+1\right)\left(\sqrt{b}-1\right)}}\)\(=\sqrt{\frac{a^2-1}{b^2-1}}\) (*)
Thay a=7,25 và b= 3,25 vào (*) ta có:
\(\sqrt{\frac{7,25^2-1}{3,25^2-1}}\) \(=\frac{5\sqrt{33}}{4}:\frac{3\sqrt{17}}{4}=\frac{5\sqrt{33}}{3\sqrt{17}}=\frac{5\sqrt{561}}{51}\)
Bài 4 :
\(a,\sqrt{x-1}=2\)
=> \(x-1=2^2=4\)
=>\(x=4+1=5\)
Vậy \(x\in\left\{5\right\}\)
\(b,\sqrt{x^2-3x+2}=2\)
=> \(x^2-3x+2=2\)
=> \(x^2-3x=2-2=0\)
=>\(x.\left(x-3\right)=0\)( phân tích đa thức thanh nhân tử )
=> \(\left[{}\begin{matrix}x=0\\x-3=0=>x=0+3=3\end{matrix}\right.\)
Vậy \(x\in\left\{0;3\right\}\)
MÌNH Biết vậy thôi ,
Bài 4 :
c) \(\sqrt{4x+1}=x+1\)ĐK : \(x\ge-1\)
\(\Leftrightarrow4x+1=\left(x+1\right)^2\)
\(\Leftrightarrow x^2+2x+1-4x-1=0\)
\(\Leftrightarrow x^2-2x=0\)
\(\Leftrightarrow x\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)( thỏa )
d) \(\sqrt{x+2\sqrt{x-1}}-\sqrt{x-2\sqrt{x-1}}=2\)
\(\Leftrightarrow\sqrt{x-1+2\sqrt{x-1}+1}-\sqrt{x-1-2\sqrt{x-1}+1}=2\)
\(\Leftrightarrow\sqrt{\left(\sqrt{x-1}+1\right)^2}-\sqrt{\left(\sqrt{x-1}-1\right)^2}=2\)
\(\Leftrightarrow\left|\sqrt{x-1}+1\right|-\left|\sqrt{x-1}-1\right|=2\)
+) Xét \(x\ge2\)
\(pt\Leftrightarrow\sqrt{x-1}+1-\sqrt{x-1}+1=2\)
\(\Leftrightarrow2=2\)( luôn đúng )
+) Xét \(1\le x< 2\):
\(pt\Leftrightarrow\sqrt{x-1}+1-1+\sqrt{x-1}=2\)
\(\Leftrightarrow\sqrt{x-1}=1\)
\(\Leftrightarrow x-1=1\)
\(\Leftrightarrow x=2\)( loại )
Vậy \(x\ge2\)