Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐK: a,b,c \(\ne\) 0
Theo tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{1}{a}=\dfrac{1}{b}=\dfrac{1}{c}=\dfrac{1}{a+b+c}\)
Lại có: \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{a+b+c}\)
\(\Rightarrow\) \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{a}=\dfrac{1}{b}=\dfrac{1}{c}\)
Với \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{a}\)
\(\Rightarrow\) \(\dfrac{1}{b}+\dfrac{1}{c}=0\) \(\Rightarrow\) \(\dfrac{b+c}{bc}=0\) \(\Rightarrow\) b + c = 0 (vì bc \(\ne\) 0 do a,b,c \(\ne\) 0)
\(\Rightarrow\) b = -c \(\Rightarrow\) b5 = (-c)5 \(\Rightarrow\) b5 + c5 = 0
Thay b5 + c5 = 0 vào M ta được:
M = (a19 + b19).(b5 + c5).(c2001 + a2001)
M = (a19 + b19).0.(c2001 + a2001)
M = 0 (đpcm)
Chúc bn học tốt!
em 2k6, đọc phần lí thuyết r lm, nên có lỗi j sai mong mn thông cảm
bài 1,
a, \(3xy\left(4xy^2-5x^2y-4xy\right)\)
= \(3xy.4xy^2-3xy.5x^2y-3xy.4xy\)
=\(12x^2y^3-15x^3y^2-12x^2y^2\)
13.
M \(=\)\(\left(x+2\right)\left(x+4\right)\left(x+6\right)\left(x+8\right)\)\(+16\)
\(=\)\(\left(x+2\right)\left(x+8\right)\left(x+4\right)\left(x+6\right)+16\)
\(=\left(x^2+10x+16\right)\left(x^2+10x+24\right)+16\)
\(=\left(x^2+10x+20-4\right)\left(x^2+10x+20+4\right)\) \(+16\)
\(=\left(x^2+10x+20\right)^2-16+16\)
\(=\left(x^2+10x+20\right)^2\) là một số chính phương
Nhiều quá, nhìn đã thấy ớn lạnh :(
Bạn nên chia nhỏ ra , post 1 hoặc 2 bài 1 lần thôi, đăng 1 lần 1 nùi thế này không ai dám làm đâu, bội thực chữ viết.
Bài 4:
a: \(\Leftrightarrow x^3-3x^2+3x-1-x^3-27+3x^2-12=2\)
\(\Leftrightarrow3x-40=2\)
=>3x=42
hay x=14
b: \(\Leftrightarrow x^3+8-x^3-2x=0\)
=>-2x+8=0
=>-2x=-8
hay x=4
c: \(x\left(x-2\right)+\left(x-2\right)=0\)
=>(x-2)(x+1)=0
=>x=2 hoặc x=-1
d: \(5x\left(x-3\right)-x+3=0\)
=>5x(x-3)-(x-3)=0
=>(x-3)(5x-1)=0
=>x=3 hoặc x=1/5
e: \(3x\left(x-5\right)-\left(x-1\right)\left(3x+2\right)=30\)
\(\Leftrightarrow3x^2-15x-3x^2-2x+3x+2=30\)
=>-14x=28
hay x=-2
f: \(\Leftrightarrow\left(x+2\right)\left(x+30-x-5\right)=0\)
=>x+2=0
hay x=-2
1) ta có: A= x^3 -8y^3=> A=(x-2y)(x^2 +2xy+4y^2)=>A=5.(29+2xy) (vì x-2y=5 và x^2+4y^2=29) (1)
Mặt khác : x-2y=5(gt)=> (x-2y)^2=25=> x^2-4xy+4y^2=25=>29-4xy=25(vì x^2+4y^2=29)
=> xy=1 (2)
Thay (2) vào (1) ta đc: A= 5.(29+2.1)=155
Vậy gt của bt A là 155
2) theo bài ra ta có: a+b+c=0 => a+b=-c=>(a+b)^2=c^2=> a^2 +b^2+2ab=c^2=>c^2-a^2-b^2=2ab
=> \(\left(c^2-a^2-b^2\right)^2=4a^2b^2\)
=>\(c^4+a^4+b^4-2c^2a^2+2a^2b^2-2b^2c^2=4a^2b^2\)
=>\(a^4+b^4+c^4=2a^2b^2+2b^2c^2+2c^2a^2\)
=>\(2\left(a^4+b^4+c^4\right)=\left(a^2+b^2+c^2\right)^2\)
=> \(a^4+b^4+c^4=\frac{1}{2}\left(a^2+b^2+c^2\right)^2\) (đpcm)
Đề này chép có đúng không thế bạn? Chứ mình thấy hơi sai sai.
Bạn cần viết cụ thể hơn: Số nguyên dương $x,y$ và số nguyên tố $p$ thỏa mãn. $p^x-y^4=4$
Lời giải:
Nếu $p=2$ thì: $y^4=2^x-4\vdots 2$
$\Rightarrow y\vdots 2$
$\Rightarrow 2^x-4=y^4\vdots 8$
$\Rightarrow 2^x$ không chia hết cho $8$
$\Rightarrow x< 3$. Thử $x=1; 2$ ta không thu được $y$ nguyên dương thỏa mãn (loại)
Nếu $p\neq 2$ ($p$ lẻ)
$p^x=y^4+4=(y^2+2)^2-(2y)^2=(y^2+2-2y)(y^2+2+2y)$
Do đó tồn tại $m,n\in\mathbb{N}$ sao cho:
$y^2+2-2y=p^m; y^2+2+2y=p^n$ và $m+n=x; m< n$
$\Rightarrow 4y=p^n-p^m$
Giả sử $m,n\geq 1$ thì $4y\vdots p\Rightarrow y\vdots p$ (do $p$ lẻ)
$\Rightarrow 4=p^x-y^4\vdots p$ (vô lý)
Do đó $m=0$. Khi đó: $y^2+2-2y=p^0=1$
$\Leftrightarrow y^2-2y+1=0\Rightarrow y=1$
$\Rightarrow p^x=5\Rightarrow p=5; x=1$
Vậy........