\(\left(\frac{1}{a+2}+\frac{6}{6-3a}+\frac{a^2}{a^3-4a}\right):\left(a-2+\frac{10-...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 5 2016
  1. Ta chứng minh bất đẳng thức phụ dưới đây: \(\frac{1}{\sqrt{x}\left(x+1\right)}=\frac{\sqrt{x}}{x\left(x+1\right)}=\sqrt{x}\left(\frac{1}{x}-\frac{1}{x+1}\right)=\sqrt{x}\left(\frac{1}{\sqrt{x}}-\frac{1}{\sqrt{x+1}}\right)\left(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{x+1}}\right)\)\(=\left(1+\frac{\sqrt{x}}{\sqrt{x+1}}\right)\left(\frac{1}{\sqrt{x}}-\frac{1}{\sqrt{x+1}}\right)< 2\left(\frac{1}{\sqrt{x}}-\frac{1}{\sqrt{x+1}}\right)\)

Áp dụng  : \(\frac{1}{\sqrt{1}.2}< 2.\left(1-\frac{1}{\sqrt{2}}\right)\)

\(\frac{1}{\sqrt{2}.3}< 2.\left(\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}\right)\)

...................................

\(\frac{1}{\sqrt{2015}.2016}< 2.\left(\frac{1}{\sqrt{2015}}-\frac{1}{\sqrt{2016}}\right)\)

Cộng các BĐT trên với nhau được : \(\frac{1}{2}+\frac{1}{3\sqrt{2}}+\frac{1}{4\sqrt{3}}+...+\frac{1}{2016\sqrt{2015}}< 2\left(1-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{2015}}-\frac{1}{\sqrt{2016}}\right)=2\left(1-\frac{1}{\sqrt{2016}}\right)< 2\left(1-\frac{1}{\sqrt{2025}}\right)=\frac{88}{45}\)

Từ đó suy ra đpcm

Cái ............... là gì vậy bn

19 tháng 4 2020

0u9ugggg

1 tháng 8 2016

a.\(\frac{5}{4}x^2y.\left(\frac{-5}{6}xy\right)^0\left(\frac{-7}{3}xy\right)\)\(\frac{5}{4}x^2y.1.\left(\frac{-7}{3}xy\right)\)\(\frac{-35}{12}x^3.y^2\)

câu b, c,d làm tương tự như trên nha ^.^

8 tháng 10 2019

a, \(-\frac{5}{7}-\left(\frac{1}{2}-x\right)=-\frac{11}{4}\)

\(\frac{1}{2}-x=\frac{57}{28}\)

\(x=-\frac{43}{28}\)

b, \(\left(2x-1\right)^2-5=20\)

\(\Rightarrow\left(2x-1\right)^2=25\)

\(\Rightarrow2x-1=\pm5\)

\(\Rightarrow\left[{}\begin{matrix}2x-1=5\\2x-1=-5\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}2x=6\\2x=-4\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=3\\x=-2\end{matrix}\right.\)

8 tháng 10 2019

b, \(\left(2x-1\right)^2-5=20\)

\(\Rightarrow\left(2x-1\right)^2=25\)

\(\Rightarrow\left(2x-1\right)^2=5^2\)

\(\Rightarrow\left[{}\begin{matrix}2x-1=6\\2x-1=-6\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}2x=7\\2x=-5\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\frac{7}{2}\\x=-\frac{5}{2}\end{matrix}\right.\)

Vậy ...

8 tháng 10 2019

a) \(-\frac{5}{7}-\left(\frac{1}{2}-x\right)=\frac{-11}{4}\)

\(\Rightarrow\left(\frac{1}{2}-x\right)=\left(-\frac{5}{7}\right)+\frac{11}{4}\)

\(\Rightarrow\frac{1}{2}-x=\frac{57}{28}\)

\(\Rightarrow x=\frac{1}{2}-\frac{57}{28}\)

\(\Rightarrow x=-\frac{43}{28}\)

Vậy \(x=-\frac{43}{28}.\)

b) \(\left(2x-1\right)^2-5=20\)

\(\Rightarrow\left(2x-1\right)^2=20+5\)

\(\Rightarrow\left(2x-1\right)^2=25\)

\(\Rightarrow2x-1=\pm5\)

\(\Rightarrow\left[{}\begin{matrix}2x-1=5\\2x-1=-5\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}2x=5+1=6\\2x=\left(-5\right)+1=-4\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=6:2\\x=\left(-4\right):2\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=3\\x=-2\end{matrix}\right.\)

Vậy \(x\in\left\{3;-2\right\}.\)

d) \(\frac{x-6}{4}=\frac{4}{x-6}\)

\(\Rightarrow\left(x-6\right).\left(x-6\right)=4.4\)

\(\Rightarrow\left(x-6\right).\left(x-6\right)=16\)

\(\Rightarrow\left(x-6\right)^2=16\)

\(\Rightarrow x-6=\pm4\)

\(\Rightarrow\left[{}\begin{matrix}x-6=4\\x-6=-4\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=4+6\\x=\left(-4\right)+6\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=10\\x=2\end{matrix}\right.\)

Vậy \(x\in\left\{10;2\right\}.\)

Chúc bạn học tốt!

6 tháng 8 2018

a) \(\left(x-\frac{1}{2}\right)^3=\left(\frac{1}{2}\right)^3\)

\(\Rightarrow x-\frac{1}{2}=\frac{1}{2}\)

\(\Rightarrow x=1\)

6 tháng 8 2018

b) \(\left(x+\frac{1}{2}\right)^2=\left(\frac{2}{3}\right)^2\)

\(\Rightarrow x+\frac{1}{2}=\frac{2}{3}\)

\(\Rightarrow x=\frac{1}{6}\)

24 tháng 2 2017

a) (-a/2)3xy(4a2x3)(13/3ay2)

=(4.13/3.3)(x.x3)(y.y2)(-a/2.a2.a)

=52x4y3(-a)3/2

24 tháng 2 2017

c)(7/3x2y3)10(3/7x5y4)10

=(7/3)10.(3/7)10.(x20.x50).(y30.y40)

= x70.y70