\(\left(x-y\right)^3-3...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 11 2018

a, Xét tử thức \(x^2\left(y-z\right)+y^2\left(z-x\right)+z^2\left(x-y\right)\)

\(=x^2\left(y-z\right)-y^2\left(x-z\right)+z^2\left[\left(x-z\right)-\left(y-z\right)\right]\)

\(=x^2\left(y-z\right)-y^2\left(x-z\right)+z^2\left(x-z\right)-z^2\left(y-z\right)\)

\(=\left(x^2-z^2\right)\left(y-z\right)-\left(y^2-z^2\right)\left(x-z\right)\)

\(=\left(x-z\right)\left(x+z\right)\left(y-z\right)-\left(y-z\right)\left(y+z\right)\left(x-z\right)\)

\(=\left(x-z\right)\left(xy-xz+yz-z^2-y^2-yz+yz+z^2\right)\)

\(=\left(x-z\right)\left(xy-xz+yz-y^2\right)=\left(x-z\right)\left[x\left(y-z\right)-y\left(y-z\right)\right]\)

\(=\left(x-z\right)\left(x-y\right)\left(y-z\right)\)

Mẫu thức \(x^2y-x^2z+y^2z-y^3=x^2\left(y-z\right)-y^2\left(y-z\right)=\left(x-y\right)\left(x+y\right)\left(y-z\right)\)

Vậy \(\frac{x^2\left(y-z\right)+y^2\left(z-x\right)+z^2\left(x-y\right)}{x^2y-x^2z+y^2z-y^3}=\frac{\left(x-y\right)\left(y-z\right)\left(x-z\right)}{\left(x-y\right)\left(x+y\right)\left(y-z\right)}=\frac{x-z}{x+y}\)

b, \(\frac{x^5+x+1}{x^3+x^2+x}=\frac{x^5-x^2+x^2+x+1}{x\left(x^2+x+1\right)}=\frac{x^2\left(x-1\right)\left(x^2+x+1\right)+x^2+x+1}{x\left(x^2+x+1\right)}=\frac{\left(x^2+x+1\right)\left(x^3-x^2+1\right)}{x\left(x^2+x+1\right)}=\frac{x^3-x^2+1}{x}\)

20 tháng 4 2017

Bài giải:

a) (a + b)2 – (a – b)2 = (a2 + 2ab + b2) – (a2 – 2ab + b2)

= a2 + 2ab + b2 – a2 + 2ab - b2 = 4ab

Hoặc (a + b)2 – (a – b)2 = [(a + b) + (a – b)][(a + b) – (a – b)]

= (a + b + a – b)(a + b – a + b)

= 2a . 2b = 4ab

b) (a + b)3 – (a – b)3 – 2b3

= (a3 + 3a2b + 3ab2 + b3) – (a3 – 3a2b + 3ab2 – b3) – 2b3

= a3 + 3a2b + 3ab2 + b3 – a3 + 3a2b - 3ab2 + b3 – 2b3

= 6a2b

Hoặc (a + b)3 – (a – b)3 – 2b3 = [(a + b)3 – (a – b)3] – 2b3

= [(a + b) – (a – b)][(a + b)2 + (a + b)(a – b) + (a – b)2] – 2b3

= (a + b – a + b)(a2 + 2ab + b2 + a2 – b2 + a2 – 2ab + b2) – 2b3

= 2b . (3a2 + b2) – 2b3 = 6a2b + 2b3 – 2b3 = 6a2b

c) (x + y + z)2 – 2(x + y + z)(x + y) + (x + y)2

= x2 + y2 + z2+ 2xy + 2yz + 2xz – 2(x2 + xy + yx + y2 + zx + zy) + x2 + 2xy + y2

= 2x2 + 2y2 + z2 + 4xy + 2yz + 2xz – 2x2 – 4xy – 2y2 – 2xz – 2yz = z2

21 tháng 7 2017

b) Ta có nhận xét này nếu a+b+c=0 thì\(a^3+b^3+c^3=3abc\) (nếu cần chứng minh thì hỏi sau nhé)

Khi đó: tử=(x-y)(y-z)(z-x)

Mẫu nó cứ thế nào ấy. Rút gọn cũng chỉ được một chút thôi, chẳng gọn lắm

a) chịu chưa nghĩ ra

21 tháng 11 2017

Hỏi đáp ToánHỏi đáp ToánHỏi đáp ToánHỏi đáp Toán

23 tháng 11 2017

Bn ko hiểu chỗ nào... Để mk giải thik cho...

Bài 1: Rút gọn các biểu thức sau: a) \(3x^2\) - 2x( 5+ 1,5x) +10 b) 7x ( 4y- x) + 4y( y-7x) - 2( \(2y^2\) - 3,5x) c) \(\left\{2x-3\left(x-1\right)-5\left[x-4\left(3-2x\right)+10\right]\right\}.\left(-2x\right)\) Bài 2: Tìm x, biết: a) 3( 2x -1) - 5( x -3) + 6( 3x -4) = 24 b) \(2x^2+3\left(x^2-1\right)=5x\left(x+1\right)\) c) \(2x\left(5-3x\right)+2x\left(3x-5\right)-3\left(x-7\right)=3\) d) \(3x\left(x+1\right)-2x\left(x+2\right)=-1-x\) Bài 3: Tính giá trị của các...
Đọc tiếp

Bài 1: Rút gọn các biểu thức sau:

a) \(3x^2\) - 2x( 5+ 1,5x) +10

b) 7x ( 4y- x) + 4y( y-7x) - 2( \(2y^2\) - 3,5x)

c) \(\left\{2x-3\left(x-1\right)-5\left[x-4\left(3-2x\right)+10\right]\right\}.\left(-2x\right)\)

Bài 2: Tìm x, biết:

a) 3( 2x -1) - 5( x -3) + 6( 3x -4) = 24

b) \(2x^2+3\left(x^2-1\right)=5x\left(x+1\right)\)

c) \(2x\left(5-3x\right)+2x\left(3x-5\right)-3\left(x-7\right)=3\)

d) \(3x\left(x+1\right)-2x\left(x+2\right)=-1-x\)

Bài 3: Tính giá trị của các biểu thức sau:

a)\(A=x^2\left(x+y\right)-y\left(x^2+y^2\right)+2002\) Với \(x=1;y=-1\)

b) \(B=5x\left(x-4y\right)-4y\left(y-5x\right)-\dfrac{11}{20}\) Với \(x=-0,6;y=-0,75\)

Bài 4: Chứng tỏ rằng giá trị của biểu thức sau không phụ thuộc vào giá trị biến:

a) \(2\left(2x+x^2\right)-x^2\left(x+2\right)+\left(x^3-4x+3\right)\)

b) \(z\left(y-x\right)+y\left(z-x\right)+x\left(y+z\right)-2yz+100\)

c) \(2y\left(y^2+y+1\right)-2y^2\left(y+1\right)-2\left(y+10\right)\)

Bài 5: Tính giá trị của biểu thức:

a) \(A=\left(x-3\right)\left(x-7\right)-\left(2x-5\right)\left(x-1\right)\) Với \(x=0;x=1;x=-1\)

b) \(B=\left(3x+5\right)\left(2x-1\right)+\left(4x-1\right)\left(3x+2\right)\) Với \(\left|x\right|=2\)

c) \(C=\left(2x+y\right)\left(2z+y\right)+\left(x-y\right)\left(y-z\right)\) Với \(x=1;y=1;z=\left|1\right|\)

7
AH
Akai Haruma
Giáo viên
20 tháng 11 2018

Bài 1:

a) \(3x^2-2x(5+1,5x)+10=3x^2-(10x+3x^2)+10\)

\(=10-10x=10(1-x)\)

b) \(7x(4y-x)+4y(y-7x)-2(2y^2-3,5x)\)

\(=28xy-7x^2+(4y^2-28xy)-(4y^2-7x)\)

\(=-7x^2+7x=7x(1-x)\)

c)

\(\left\{2x-3(x-1)-5[x-4(3-2x)+10]\right\}.(-2x)\)

\(\left\{2x-(3x-3)-5[x-(12-8x)+10]\right\}(-2x)\)

\(=\left\{3-x-5[9x-2]\right\}(-2x)\)

\(=\left\{3-x-45x+10\right\}(-2x)=(13-46x)(-2x)=2x(46x-13)\)

AH
Akai Haruma
Giáo viên
20 tháng 11 2018

Bài 2:

a) \(3(2x-1)-5(x-3)+6(3x-4)=24\)

\(\Leftrightarrow (6x-3)-(5x-15)+(18x-24)=24\)

\(\Leftrightarrow 19x-12=24\Rightarrow 19x=36\Rightarrow x=\frac{36}{19}\)

b)

\(\Leftrightarrow 2x^2+3(x^2-1)-5x(x+1)=0\)

\(\Leftrightarrow 2x^2+3x^2-3-5x^2-5x=0\)

\(\Leftrightarrow -5x-3=0\Rightarrow x=-\frac{3}{5}\)

\(2x^2+3(x^2-1)=5x(x+1)\)

12 tháng 6 2018

a)\(9x^2+30x+25+9x^2-30x+25-\left(9x^2-2^2\right)\)

=\(9x^2+54\)=\(9\left(x^2+6\right)\)

b)\(2x\left(4x^2-4x+1\right)-3x\left(x^2-9\right)-4x\left(x^2+2x+1\right)\)

=\(8x^3-8x^2+2x-3x^3+27x-4x^3-8x^2-4x\)

=\(x^3-16x^2+25x\)

c)\(\left(x+y-z\right)^2-2\left(x+y-z\right)\left(x+y\right)+\left(x+y\right)^2\)

=\(\left(x+y-z-\left(x+y\right)\right)^2\)=\(\left(-z\right)^2\)

22 tháng 11 2016

AD phân tích đa thức thành nhân tử ở tử thức và mẫu thức của từng phân thức

22 tháng 11 2016

uk mik cám ơn nhé

27 tháng 7 2017

b, \(\left(x-y\right)^3+\left(y-z\right)^3+\left(z-x\right)^3\)

\(=\left(x-y\right)^2\left(x-y\right)-\left(y-z\right)^2\left[\left(x-y\right)+\left(z-x\right)\right]+\left(z-x\right)^2\left(z-x\right)\)

\(=\left(x-y\right)^2\left(x-y\right)-\left(y-z\right)^2\left(x-y\right)-\left(y-z\right)^2\left(z-x\right)+\left(z-x\right)^2\left(z-x\right)\)

\(=\left(x-y\right)\left[\left(x-y\right)^2-\left(y-z\right)^2\right]-\left(z-x\right)\left[\left(y-z\right)^2-\left(z-x\right)^2\right]\)

\(=\left(x-y\right)\left(x-y-y+z\right)\left(x-y+y-z\right)-\left(z-x\right)\left(y-z-z+x\right)\left(y-z+z-x\right)\)

\(=\left(x-y\right)\left(x-2y+z\right)\left(x-z\right)-\left(z-x\right)\left(y-2z+x\right)\left(y-x\right)\)

\(=\left(x-y\right)\left(x-2y+z\right)\left(x-z\right)-\left(x-z\right)\left(y-2z+x\right)\left(x-y\right)\)

\(=\left(x-y\right)\left(x-z\right)\left(x-2y+z-y+2z-x\right)\)

\(=\left(x-y\right)\left(x-z\right)\left(3z-3y\right)\)

\(=3\left(x-y\right)\left(x-z\right)\left(z-y\right)\)

c, \(x^2y^2\left(y-x\right)+y^2z^2\left(z-y\right)-z^2x^2\left(z-x\right)\)

\(=x^2y^2\left(y-x\right)-y^2z^2\left[\left(y-x\right)-\left(z-x\right)\right]-z^2x^2\left(z-x\right)\)

\(=x^2y^2\left(y-x\right)-y^2z^2\left(y-x\right)+y^2z^2\left(z-x\right)-z^2x^2\left(z-x\right)\)

\(=\left(x^2y^2-y^2z^2\right)\left(y-x\right)+\left(y^2z^2-z^2x^2\right)\left(z-x\right)\)

\(=y^2\left(x-z\right)\left(x+z\right)\left(y-x\right)+z^2\left(y-x\right)\left(x+y\right)\left(z-x\right)\)

\(=y^2\left(x-z\right)\left(x+z\right)\left(y-x\right)-z^2\left(y-x\right)\left(x+y\right)\left(x-z\right)\)

\(=\left(x-z\right)\left(y-x\right)\left[y^2\left(x+z\right)-z^2\left(x+y\right)\right]\)

\(=\left(x-z\right)\left(y-x\right)\left(y^2x+y^2z-z^2x-z^2y\right)\)

\(=\left(x-z\right)\left(y-x\right)\left[x\left(y^2-z^2\right)+yz\left(y-z\right)\right]\)

\(=\left(x-z\right)\left(y-x\right)\left[x\left(y-z\right)\left(y+z\right)+yz\left(y-z\right)\right]\)

\(=\left(x-z\right)\left(y-x\right)\left(y-z\right)\left(xy+xz+yz\right)\)

d, \(x^3+y^3+z^3-3xyz\)

\(=\left(x+y\right)^3+z^3-3xyz-3xy\left(x+y\right)\)

\(=\left(x+y+z\right)\left[\left(x+y\right)^2-\left(x+y\right)z+z^2\right]-3xy\left(x+y+z\right)\)

\(=\left(x+y+z\right)\left(x^2+2xy+y^2-xz-yz+z^2-3xy\right)\)

\(=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-xz\right)\)

AH
Akai Haruma
Giáo viên
24 tháng 11 2018

Câu a:

Xét tử số:

\(x^2(y-z)+y^2(z-x)+z^2(x-y)\)

\(=x^2(y-z)-y^2[(y-z)+(x-y)]+z^2(x-y)\)

\(=x^2(y-z)-y^2(y-z)-y^2(x-y)+z^2(x-y)\)

\(=(x^2-y^2)(y-z)-(y^2-z^2)(x-y)\)

\(=(x-y)(y-z)[(x+y)-(y+z)]=(x-y)(y-z)(x-z)\)

Xét mẫu số:

\(x^2y-x^2z+y^2z-y^3=x^2(y-z)-y^2(y-z)=(x^2-y^2)(y-z)\)

\(=(x-y)(x+y)(y-z)\)

Do đó:
\(\frac{x^2(y-z)+y^2(z-x)+z^2(x-y)}{x^2y-x^2z+y^2z-y^3}=\frac{(x-y)(y-z)(x-z)}{(x-y)(x+y)(y-z)}=\frac{x-z}{x+y}\)

AH
Akai Haruma
Giáo viên
24 tháng 11 2018

Câu b:

Xét tử số:

\(x^5+x+1=x^5-x^2+x^2+x+1=x^2(x^3-1)+x^2+x+1\)

\(=x^2(x-1)(x^2+x+1)+(x^2+x+1)\)

\(=(x^2+x+1)(x^3-x^2+1)\)

Xét mẫu số:

\(x^3+x^2+x=x(x^2+x+1)\)

Do đó: \(\frac{x^5+x+1}{x^3+x^2+1}=\frac{(x^2+x+1)(x^3-x^2+1)}{x(x^2+x+1)}=\frac{x^3-x^2+1}{x}\)