Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,
\(\left(x^2-2xy+y^2\right)\left(x-y\right)-\left(x-y\right)\left(x^2+xy+y^2\right)\)
\(=\left[\left(x^2-2xy+y^2\right)\left(x-y\right)\right]-\left[\left(x-y\right)\left(x^2+xy+y^2\right)\right]\)
\(=\left[\left(x-y\right)^2\left(x-y\right)\right]-\left(x-y\right)^3\)
\(=\left(x-y\right)^3-\left(x-y\right)^3\)
\(=0\)
Một năm trôi qua ~ . Giờ làm tiếp câu 1 :v
Câu a : \(x\left(x-y\right)+y\left(x-y\right)=x^2-xy+xy-y^2=x^2-y^2\)
Câu b : \(\left(x^2-xy+y^2\right)\left(x+y\right)-\left(x-y\right)\left(x^2+xy+y^2\right)\)
\(=\left(x^3+y^3\right)-\left(x^3-y^3\right)=x^3+y^3-x^3+y^3=2y^3\)
Câu c : \(7x\left(4y-x\right)+4y\left(y-7x\right)-\left(4y^2-7x\right)\)
\(=28xy-7x^2+4y^2-28xy-4y^2+7x^2=0\)
Câu d : \(\left(2x+y\right)\left(2z+y\right)+\left(x-y\right)\left(y-z\right)\)
\(=4xz+2xy+2yz+y^2+xy-xz-y^2+yz\)
\(3xy+3yz+3xz=3\left(xy+yz+xz\right)\)
Lười làm câu 1 :
Câu 2 :
\(3x\left(12x-4\right)-9x\left(4x-3\right)=30\)
\(\Leftrightarrow36x^2-12x-36x^2+27x=30\)
\(\Leftrightarrow15x=30\)
\(\Rightarrow x=2\)
\(1)A=2x\left(x-y\right)-y\left(y-2x\right)\)
\(=2x^2-2xy-y^2+2xy\)
\(=2x^2-y^2=2.\left(-\dfrac{2}{3}\right)^2-\left(-\dfrac{1}{3}\right)^2\)
\(=\dfrac{8}{9}-\dfrac{1}{9}=\dfrac{7}{9}\)
\(2)B=5x\left(x-4y\right)-4y\left(y-5x\right)\)
\(=5x^2-20xy-4y^2+20xy\)
\(=5x^2-4y^2=5.\left(-\dfrac{1}{5}\right)^2-4.\left(-\dfrac{1}{2}\right)^2=\dfrac{1}{5}-1=-\dfrac{4}{5}\)
\(3)C=\text{x.(x^2-y^2)-x^2(x+y)+y(x^2-x)}\)
\(=x^3-xy^2-x^3-x^2y+x^2y-xy\)
\(=-xy\left(x+1\right)\)
Bài 1:
a: ĐKXĐ: \(x+4\ne0\)
=>\(x\ne-4\)
b: ĐKXĐ: \(2x-1\ne0\)
=>\(2x\ne1\)
=>\(x\ne\dfrac{1}{2}\)
c: ĐKXĐ: \(x\left(y-3\right)\ne0\)
=>\(\left\{{}\begin{matrix}x\ne0\\y-3\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne0\\y\ne3\end{matrix}\right.\)
d: ĐKXĐ: \(x^2-4y^2\ne0\)
=>\(\left(x-2y\right)\left(x+2y\right)\ne0\)
=>\(x\ne\pm2y\)
e: ĐKXĐ: \(\left(5-x\right)\left(y+2\right)\ne0\)
=>\(\left\{{}\begin{matrix}x\ne5\\y\ne-2\end{matrix}\right.\)
Bài 2:
a: \(\dfrac{-12x^3y^2}{-20x^2y^2}=\dfrac{12x^3y^2}{20x^2y^2}=\dfrac{12x^3y^2:4x^2y^2}{20x^2y^2:4x^2y^2}=\dfrac{3x}{5}\)
b: \(\dfrac{x^2+xy-x-y}{x^2-xy-x+y}\)
\(=\dfrac{\left(x^2+xy\right)-\left(x+y\right)}{\left(x^2-xy\right)-\left(x-y\right)}\)
\(=\dfrac{x\left(x+y\right)-\left(x+y\right)}{x\left(x-y\right)-\left(x-y\right)}=\dfrac{\left(x+y\right)\left(x-1\right)}{\left(x-y\right)\left(x-1\right)}\)
\(=\dfrac{x+y}{x-y}\)
c: \(\dfrac{7x^2-7xy}{y^2-x^2}\)
\(=\dfrac{7x\left(x-y\right)}{\left(y-x\right)\left(y+x\right)}\)
\(=\dfrac{-7x\left(x-y\right)}{\left(x-y\right)\left(x+y\right)}=\dfrac{-7x}{x+y}\)
d: \(\dfrac{7x^2+14x+7}{3x^2+3x}\)
\(=\dfrac{7\left(x^2+2x+1\right)}{3x\left(x+1\right)}\)
\(=\dfrac{7\left(x+1\right)^2}{3x\left(x+1\right)}=\dfrac{7\left(x+1\right)}{3x}\)
e: \(\dfrac{3y-2-3xy+2x}{1-3x-x^3+3x^2}\)
\(=\dfrac{3y-2-x\left(3y-2\right)}{1-3x+3x^2-x^3}\)
\(=\dfrac{\left(3y-2\right)\left(1-x\right)}{\left(1-x\right)^3}=\dfrac{3y-2}{\left(1-x\right)^2}\)
g: \(\dfrac{x^2+7x+12}{x^2+5x+6}\)
\(=\dfrac{\left(x+3\right)\left(x+4\right)}{\left(x+3\right)\left(x+2\right)}\)
\(=\dfrac{x+4}{x+2}\)
a; A = (7\(x\) + 5)2 + (3\(x-5\))2 - (10 - 6\(x\)).(5 + 7\(x\))
A = 49\(x^2\) + 70\(x\) + 25 + 9\(x^2\) - 30\(x\) + 25 - 50 - 70\(x\) + 30\(x\) + 42\(x^2\)
A = (49\(x^2\) + 9\(x^2\) + 42\(x^2\)) + (70\(x-70x\)) - (30\(x\) - 30\(x\)) + (25+25-50)
A = 100\(x^2\) + 0 + 0 + (50 - 50)
A = 100\(x^2\) + 0 + 0 + 0
A = 100\(x^2\)
Thay \(x=-2\) vào A = 100\(x^2\) ta có:
A = 100.(-2)2
A = 100.4
A = 400.
a, Ta có : \(x\left(x-y\right)+y\left(x-y\right)\)
\(=\left(x+y\right)\left(x-y\right)=x^2-y^2\)
b, Ta có : \(7x\left(4y-x\right)+4y\left(y-7x\right)-\left(4y^2-7x\right)\)
\(=28xy-7x^2+4y^2-28xy-4y^2+7x\)
\(=7x-7x^2=7x\left(1-x\right)\)
Bài 1: Rút gọn biểu thức
a) Ta có: \(x\left(x-y\right)+y\left(x-y\right)\)
\(=\left(x-y\right)\left(x+y\right)\)
\(=x^2-y^2\)
b) Ta có: \(7x\left(4y-x\right)+4y\left(y-7x\right)-\left(4y^2-7x\right)\)
\(=28xy-7x^2+4y^2-28xy-4y^2+7x\)
\(=-7x^2+7x\)
mn ơi giúp mình với