Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\frac{1}{x^2-5x+6}+\frac{1}{x^2-7x+12}+\frac{1}{x^2-9x+20}+\frac{1}{x^2-11x+30}=\frac{1}{8}\)
\(\Leftrightarrow\frac{1}{x^2-3x-2x+6}+\frac{1}{x^2-3x-4x+12}+\frac{1}{x^2-4x-5x+20}+\frac{1}{x^2-5x-6x+30}=\frac{1}{8}\)
\(\Leftrightarrow\frac{1}{\left(x-2\right)\left(x-3\right)}+\frac{1}{\left(x-3\right)\left(x-4\right)}+\frac{1}{\left(x-4\right)\left(x-5\right)}+\frac{1}{\left(x-5\right)\left(x-6\right)}=\frac{1}{8}\)
\(\Leftrightarrow\frac{1}{x-6}-\frac{1}{x-5}+\frac{1}{1-5}-\frac{1}{1-4}+\frac{1}{1-4}-\frac{1}{1-3}+\frac{1}{1-3}-\frac{1}{1-2}=\frac{1}{8}\)
\(\Leftrightarrow\frac{1}{x-6}-\frac{1}{x-2}=\frac{1}{8}\)
\(\Leftrightarrow\frac{4}{x^2-8x+12}=\frac{1}{8}\)
\(\Leftrightarrow x^2-8x+12=32\)
\(\Leftrightarrow\left(x-4\right)^2=36\)
\(\Leftrightarrow x=10\) hoặc \(x=-2\)
\(\frac{1}{x^2-5x+6}+\frac{1}{x^2-7x+12}+\frac{1}{x^2-9x+20}+\frac{1}{x^2-11x+30}=\frac{1}{8}\)\(\frac{1}{x^2-2x-3x+6}+\frac{1}{x^2-4x-3x+12}+\frac{1}{x^2-4x-5x+20}+\frac{1}{x^2-6x-5x+30}=\frac{1}{8}\)
\(\frac{1}{x\left(x-2\right)-3\left(x-2\right)}+\frac{1}{x\left(x-4\right)-3\left(x-4\right)}+\frac{1}{x\left(x-4\right)-5\left(x-4\right)}+\frac{1}{x\left(x-6\right)-5\left(x-6\right)}=\frac{1}{8}\)
\(\frac{1}{\left(x-2\right)\left(x-3\right)}+\frac{1}{\left(x-3\right)\left(x-4\right)}+\frac{1}{\left(x-4\right)\left(x-5\right)}+\frac{1}{\left(x-5\right)\left(x-6\right)}=\frac{1}{8}\)dhjjhhjhhjj
\(\frac{1}{\left(x-2\right)\left(x-3\right)}+\frac{1}{\left(x-3\right)\left(x-4\right)}+\frac{1}{\left(x-4\right)\left(x-5\right)}+\frac{1}{\left(x-5\right)\left(x-6\right)}=\frac{1}{8}\)
Còn lại tự giải quyết nha
![](https://rs.olm.vn/images/avt/0.png?1311)
a: \(a^4+6a^3+11a^2+6a\)
\(=a\left(a^3+6a^2+11a+6\right)\)
\(=a\left(a^3+a^2+5a^2+5a+6a+6\right)\)
\(=a\left(a+1\right)\left(a^2+5a+6\right)\)
\(=a\left(a+1\right)\left(a+2\right)\left(a+3\right)\)
Vì a;a+1;a+2;a+3 là bốn số liên tiếp
nên \(a\left(a+1\right)\left(a+2\right)\left(a+3\right)⋮4!\)
hay \(a\left(a+1\right)\left(a+2\right)\left(a+3\right)⋮24\)
b: \(a^5-5a^3+4a\)
\(=a\left(a^4-5a^2+4\right)\)
\(=a\left(a^2-4\right)\left(a^2-1\right)\)
\(=a\left(a-2\right)\left(a+2\right)\left(a-1\right)\left(a+1\right)\)
Vì a;a-2;a+2;a-1;a+1 là 5 số liên tiếp
nên \(a\left(a-2\right)\left(a+2\right)\left(a-1\right)\left(a+1\right)⋮5!\)
hay \(a\left(a-2\right)\left(a+2\right)\left(a-1\right)\left(a+1\right)⋮120\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 1:
\(\left(\frac{1}{2x-1}-\frac{1}{2x+1}\right):\frac{4}{10x-5}\)
\(=\left(\frac{2x+1}{4x^2-1}-\frac{2x-1}{4x^2-1}\right)\cdot\frac{10x-5}{4}\)
\(=\frac{2}{\left(2x-1\right)\left(2x+1\right)}\cdot\frac{5\left(2x-1\right)}{4}\)
\(=\frac{5}{2\left(2x+1\right)}\)
Bài 2:
a)Đk:\(2x^2+2x\ne0\Leftrightarrow2x\left(x+1\right)\ne0\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x\ne0\\x\ne-1\end{array}\right.\)
b)\(A=\frac{5x+5}{2x^2+2x}=\frac{5\left(x+1\right)}{2x\left(x+1\right)}=\frac{5}{2x}\)
Phân thức A=1 nghĩ là \(\frac{5}{2x}=1\Rightarrow5=2x\Rightarrow x=\frac{5}{2}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
1
a . X.(X-2)-Y.(X-2)=(X-Y).(X-2)
b .(X2 +1+2X).(X2 +1-2X)
2
3X2 +2X+X2 +2X+1-4X2 -10X+10X+5=(-12)
4X+6= -12
X=9/2
1. a, x2-2x+2y-xy = x(x-2)+y(2-y) = x(x-2)-y(x-2) = (x-y)(x-2)
b, (x2+1)2-4x2 = (x2+1-2x)(x2+1+2x) = (x-1)2(x+1)2
2. x(3x+2)+(x+1)2-(2x-5)(2x+5) = -12
=> (3x2+2x+x2+2x+1)-(2x)2-52 = -12
=> 3x2+2x+x2+2x+1-4x2-25 = -12
=> 4x-24 = -12 => 4x = 12 => x = 3
![](https://rs.olm.vn/images/avt/0.png?1311)
1.
a) \(2x\left(x-4\right)+\left(x-1\right)\left(x+2\right)=2x^2-8x+x^2+x-2=x^2-7x-2\)
b) \(\left(x-3\right)^2-\left(x-2\right)\left(x^2+2x+4\right)=x^2-6x+9-x^3+8=-x^3+x^2-6x+17\)
2.
a) \(x^2y+xy^2-3x+3y=xy\left(x+y\right)-3\left(x-y\right)=???\)
b) \(x^3+2x^2y+xy^2-16x=x\left(x^2+2xy+y^2-16\right)=x\left[\left(x+y\right)^2-16\right]=\)làm tiếp chắc dễ
3.
\(\frac{x^4?2x^3+4x^2+2x+3}{x^2+1}\) Giữa x^4 và 2x^3 (vị trí dấu ? là dấu + hay -)
4) \(A=x^2-3x+4=\left(x-\frac{3}{2}\right)^2+\frac{7}{4}\)
\(A\ge\frac{7}{4}\)
Vậy GTNN của A là 7/4
học dạng rút gon này fai linh hoạt, bn để ý cái điều kiện kia kìa
a khác 1 a-1=0 mà mẫu khác 0=>mẫu có 1 nhân tử là a-1, tiếp tục ta có dc
mẫu=(a-1)(a-2)(a-4)
còn tử thì bấm máy ta có Tử=(a-4)(a-1)(a+1)
thay vào rút gọn thôi