Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
\(2a^2b^2+2b^2c^2+2c^2a^2-a^4-b^4-c^4>0\\ \Leftrightarrow a^4+b^4+c^4-2a^2b^2-2b^2c^2-2c^2a^2< 0\\ \Leftrightarrow\left(a^4+b^4+c^4+2a^2b^2-2b^2c^2-2c^2a^2\right)-4a^2b^2< 0\\ \Leftrightarrow\left(a^2+b^2-c^2\right)^2-4a^2b^2< 0\\ \Leftrightarrow\left(a^2+b^2-c^2-2ab\right)\left(a^2+b^2-c^2+2ab\right)< 0\\ \Leftrightarrow\left[\left(a-b\right)^2-c^2\right]\left[\left(a+b\right)^2-c^2\right]< 0\\ \Leftrightarrow\left(a-b+c\right)\left(a-b-c\right)\left(a+b-c\right)\left(a+b+c\right)< 0\left(1\right)\)
Vì a,b,c là độ dài 3 cạnh của 1 tg nên \(\left\{{}\begin{matrix}a+c>b\\a-b< c\\a+b>c\\a+b+c>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a-b+c>0\\a-b-c< 0\\a+b-c>0\\a+b+c>0\end{matrix}\right.\)
Do đó \(\left(1\right)\) luôn đúng (do 3 dương nhân 1 âm ra âm)
Từ đó ta được đpcm
2) Để sau đi (em chưa nghĩ ra)
3) \(A=\left(x+y\right)\left(x^2-y^2\right)+\left(y+z\right)\left(y^2-z^2\right)+\left(z+x\right)\left(z^2-x^2\right)\)
\(=\left(x+y\right)^2\left(x-y\right)+\left(y+z\right)^2\left(y-z\right)+\left(z+x\right)^2\left(z-x\right)\)
Đặt x - y = a; y - z = b => z - x = -(a+b)
\(A=\left(x+y\right)^2a+\left(y+z\right)^2b-\left(z+x\right)^2a-\left(z+x\right)^2b\)
\(=a\left[\left(x+y\right)^2-\left(z+x\right)^2\right]+b\left[\left(y+z\right)^2-\left(z+x\right)^2\right]\)
\(=\left(x-y\right)\left(x+y-z-x\right)\left(x+y+z+x\right)+\left(y-z\right)\left(y+z-z-x\right)\left(y+z+z+x\right)\)
\(=\left(x-y\right)\left(y-z\right)\left(2x+y+z\right)-\left(y-z\right)\left(x-y\right)\left(2z+x+y\right)\)
\(=\left(x-y\right)\left(y-z\right)\left(x-z\right)\)
Em tính sai sót chỗ nào thì thông cảm cho em ạ :>
1)
=2(a4+b4+c4-4a2b2-4a2c2-4b2c2)
=2a4+2b4+2c4-4a2b2-4a2c2-4b2c2
=(a4-2a2b2+b4)+(a4-2a2c2+c4)+(b4-2b2c2+c4
a)x2-2xy+y2+3x-3y-10
=(x2-2xy+y2)+(3x-3y)-10
=(x-y)2+3(x-y)-10
=(x-y).(x-y+3)-10
\(a,\) Đặt \(A=\left(a+b+c\right)^3-a^3-b^3-c^3\)
Với \(a=-b\) ta được \(A=0\)
Do vai trò bình đẳng của a,b,c và A bậc 3 nên nhân tử còn lại là hằng số k
Do đó \(A=k\left(a+b\right)\left(b+c\right)\left(c+a\right)\)
Cho \(a=b=c=1\Leftrightarrow3^3-1-1-1=8k\Leftrightarrow k=3\)
Do đó \(A=3\left(a+b\right)\left(b+c\right)\left(c+a\right)\)
\(b,\) Đặt \(B=a^3\left(b-c\right)+b^3\left(c-a\right)+c^3\left(a-b\right)\)
Với \(a=b\Leftrightarrow B=0\)
Do vai trò bình đẳng của a,b,c và B bậc 4 nên \(B=\left(a-b\right)\left(b-c\right)\left(c-a\right)Q\) trong đó Q bậc nhất
Do đó \(Q=\left(a+b+c\right)R\) với R là hằng số
\(\Leftrightarrow B=\left(a-b\right)\left(b-c\right)\left(c-a\right)\left(a+b+c\right)R\)
Cho \(a=1;b=2;c=3\Leftrightarrow-12=12R\Leftrightarrow R=-1\)
Do đó \(B=-\left(a-b\right)\left(b-c\right)\left(c-a\right)\left(a+b+c\right)\)
\(c,\) Đặt \(C=\left(a+b+c\right)^5-a^5-b^5-c^5\)
Cho \(a=-b\Leftrightarrow C=0\)
Do vai trò bình đẳng của a,b,c và C bậc 5 nên \(C=\left(a+b\right)\left(b+c\right)\left(c+a\right)P\) trong đó P bậc 2
Do đó \(P=\left(a^2+b^2+c^2+ab+bc+ca\right)R\) với R là hằng số
\(\Leftrightarrow C=\left(a+b\right)\left(b+c\right)\left(c+a\right)\left(a^2+b^2+c^2+ab+bc+ca\right)R\)
Cho \(a=1;b=2;c=3\Leftrightarrow7500=1500R\Leftrightarrow R=5\)
Do đó \(C=5\left(a+b\right)\left(b+c\right)\left(c+a\right)\left(a^2+b^2+c^2+ab+bc+ca\right)\)
\(d,\) Đặt \(D=2a^2b^2+2b^2c^2+2c^2a^2-a^4-b^4-c^4\)
Với \(a=b+c\Leftrightarrow D=0\)
Do vai trò bình đẳng của a,b,c và D bậc 4 nên \(D=\left(b+c-a\right)\left(c+a-b\right)\left(a+b-c\right)R\) với R bậc nhất
Do đó \(R=\left(a+b+c\right)Q\) với Q là hằng số
\(\Leftrightarrow D=\left(b+c-a\right)\left(c+a-b\right)\left(a+b-c\right)\left(a+b+c\right)Q\)
Cho \(a=b=c=1\Leftrightarrow Q=1\)
Do đó \(D=\left(b+c-a\right)\left(c+a-b\right)\left(a+b-c\right)\left(a+b+c\right)\)
a)\(\left(x+y\right)^3-x^3-y^3\\ =x^3+3x^2y+3xy^2+y^3-x^3-y^3\\ =3xy\left(x+y\right)\)