Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trên mỗi hình vuông con, kích thước 2x2 chỉ không quá một số chia hết cho 2, cũng vậy, có không quá một số chia hết cho 3.
Lát kín bảng bởi 25 hình vuông, kích thước 2x2, có nhiều nhất 25 số chia hết cho 2, có nhiều nhất 25 số chia hết cho 3. Do đó, có ít nhất 50 số còn lại không chia hết cho 2, cũng không chia hết cho 3. Vậy chúng phải là 1 trong các số 1, 5, 7.
Vậy, theo nguyên lý Dirichlet, có một số xuất hiện ít nhất 17 lần
b)Vì bảng ô vuông có kích thước 5x5 nên có tất cả:5 hàng,5 cột,2 đường chéo nên có tất cả 12 tổng.
Do khi điền vào các ô là các số 0,1,-1 nên mỗi tổng(S) là một số nguyên thỏa mãn:−5≤S≤5
\(⇒\)có 11 giá trị trong khi đó có 12 tổng nên theo nguyên lý Đi-rích-lê(hay còn gọi là chuồng thỏ) thì tồn tại ít nhất 2 tổng có giá trị bằng nhau.
a)Nếu p chẵn => p=2 => p^2 + 2^p = 2^2 + 2^2 =8 (loại)
Nếu p lẻ :
+) p\(⋮\)3 => p=3 => p^2 + 2^p =17 (thỏa)
+)p ko chia hết cho 3. Đặt p=3k\(\pm\)1
p^2=(3k\(\pm\)1)^2=9k^2 \(\pm\)6k+1=3(3k^2 \(\pm\)2k)+1 chia 3 dư 1
Còn: 2^p\(\equiv\)(-1)^p\(\equiv\)-1 (mod 3) do p lẻ
Do đó:p^2+2^p=1+(-1)=0 (mod 3)
Mà p^2 + 2^p >3 nên ko thể là số nguyên tố (loại)
Vậy p=3 thì 2^p + p^2 là snt
Ta chứng minh trong 2013 số nguyên dương đã cho chỉ nhận nhiều nhất 4 giá tri khác nhau.
Thật vậy giả sử trong các số đã cho có nhiều hơn 4 chữ số khác nhau, giả sử \(a_1,a_2,a_3,a_4,a_5\) là 5 số khác nhau bất kì. Không mất tính tổng quát ta giả sử :
\(a_1< a_2< a_3< a_4< a_5\left(1\right)\)
Theo bài ra ta có : \(a_1a_2=a_3a_4\left(2\right)\)
Theo (1) không xảy ra \(a_1a_2=a_3a_4\) hoặc \(a_1a_3=a_2a_4\)
Tương tự 4 số khác nhau \(a_1,a_2,a_3,a_5\) thì \(a_1a_5=a_2a_3\left(3\right)\)
Từ (2) và (3) suy ra \(a_4=a_5\).Mâu thuẫn.
Vậy trong 2013 số nguyên dương đã cho không thể có hơn 4 số khác nhau. Mà \(2013=4.503+1\)
Do đó trong 2013 số tự nhiên dương đã cho luôn tìm được ít nhất \(503+1=504\) số bằng nhau.
Trên mối hình vuông con, kích thước 2x2 chỉ có không quá một số chia hết cho2, cũng vậy, có không quá một số chia hết cho 3.Lát kín bảng bởi 25 hình vuông, kích thức 2x2, có nhiều nhất 25 số chia hết cho 2, có nhiều nhất 25 số chia hết cho 3. Do đó, có ít nhất 50 số còn lại không chia hết cho 2, cũng không chia hết cho 3. Vì vậy, chúng phải là một trong các số 1, 5, 7.Vậy, theo nguyên lý Dirichlet, có một số xuất hiện ít nhất 17 lan