Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi giá tiền mỗi kg bom, kiwi, nho lần lượt là x, y, z thì theo đề bài a có:
\(x.3=y.4=z.5\) và \(3y-2z=210000\)
Từ \(x.3=y.4=z.5\) , chia các vế cho 3.4.5 ta được:
\(\frac{x}{20}=\frac{y}{15}=\frac{z}{12}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\frac{x}{20}=\frac{y}{15}=\frac{z}{12}=\frac{3y-2z}{3.15-2.12}=\frac{3y-2z}{21}=\frac{210000}{21}=10000\)
=> \(\frac{x}{20}=10000\Rightarrow x=200000\)
\(\frac{y}{15}=10000\Rightarrow y=150000\)
\(\frac{z}{12}=10000\Rightarrow z=120000\)
Giải : Gọi giá tiền của nho, táo và mận lần lượt là x,y với z (đơn vị : đồng; điều kiện : x,y,z >0).
- Vì số tiền đó mua được 3 kg nho hay 4 kg táo hoặc 5 kg mận.
\(\Rightarrow\)\(\frac{x}{20}=\frac{y}{15}=\frac{z}{12}.\)
- Vì 3kg táo đắt hơn 2kg mận là 210000 đồng \(\Rightarrow\)3y - 2z = 210000.
- Áp dụng tính chất của DTSBN, ta có :
\(\frac{x}{20}=\frac{y}{15}=\frac{z}{12}\Rightarrow\frac{3y-2z}{3.15-2.12}=\frac{210000}{21}=1000.\)
\(\Rightarrow\frac{x}{20}=1000\Rightarrow x=20.1000=20000.\)
\(\Rightarrow\frac{y}{15}=1000\Rightarrow y=15.1000=15000.\)
\(\Rightarrow\frac{z}{12}=1000\Rightarrow z=12.1000=12000.\)
\(\Rightarrow\)Vậy số tiền của mỗi loại : nho, táo và mận lần lượt là 20000, 15000 và 12000 đồng.
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{\dfrac{1}{2}}=\dfrac{b}{\dfrac{1}{3}}=\dfrac{c}{\dfrac{1}{4}}=\dfrac{2b-c}{\dfrac{2}{3}-\dfrac{1}{4}}=\dfrac{150000}{\dfrac{5}{12}}=360000\)
Do đó: a=180000; b=120000; c=90000