Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi t1 là thời gian dự định,
AC là quãng đường người đó đi được trong 1/4 thời gian dự định
Ta có: 3 giờ 20 phút=10/3 giờ
Quãng đường AB=v.t1=10v/3 (1)
Quãng đường AC= \(\frac{10v}{3.4}=\frac{5v}{6}\)(2)
Quãng đường BC= (\(\frac{10}{3}-\frac{5}{6}-\frac{1}{4}\)).(v+4)= \(\frac{9v+36}{4}\)(3)
Từ (1), (2), (3) ta được: \(\frac{5v}{6}+\frac{9v+36}{4}=\frac{10v}{3}\)→v=36km/h
a) Thời gian xe đi đến B với vận tốc 60km/h:
\(t_1=t-\dfrac{1}{6}\)
Thời gian xe đi được đến B với vận tốc 40km/h:
\(t_2=t+\dfrac{1}{4}\)
Quãng đường mà xe đi được với vận tốc 60km/h:
\(s_1=v_1t_1=60\left(t-\dfrac{1}{6}\right)\)
Quãng đường mà xe đi được với vận tốc 40km/h
\(s_2=v_2t_2=40\left(t+\dfrac{1}{4}\right)\)
Vì cả hai quãng đường đều bằng nhau nên ta có phương trình:
\(s_1=s_2\)
\(\Leftrightarrow60\left(t-\dfrac{1}{6}\right)=40\left(t+\dfrac{1}{4}\right)\)
\(\Leftrightarrow60t-10=40t+10\)
\(\Leftrightarrow60t-40t=10+10\)
\(\Leftrightarrow20t=20\)
\(\Leftrightarrow t=\dfrac{20}{20}=1\left(h\right)\)
Vậy thời gian dự định đi là \(1h\)
b) Độ dài của quãng đường AC:
\(s_3=v_1.\dfrac{t}{2}=60.\dfrac{1}{2}\)
Độ dài của quãng đường CB:
\(s_4=v_2.\dfrac{t}{2}=40.\dfrac{1}{2}\)
Vì AB=CB+AC nên ta có phương trình:
\(s=s_3+s_4\)
\(\Leftrightarrow s=60.\dfrac{1}{2}+40.\dfrac{1}{2}\)
\(\Leftrightarrow s=30+20\)
\(\Leftrightarrow s=50km\)
Vậy quãng đường AB dài 50km
Đây là tính thời gian mà ?
Tóm tắt
\(V_1=15km\)/\(h\)
\(t'=10'=\frac{1}{6}h\)
\(V_2=20km\)/\(h\)
\(t''=5'=\frac{1}{12}h\)
_____________
\(t=?\)
Giải
Gọi \(S_1,S_2\) lần lượt là quãng đường đi với vận tốc 15 km/h và 20 km/h.
\(t_1;t_2\) lần lượt là thời gian đi quãng đường với vận tốc 15 km/h và 20 km/h.
Ta có công thức tính vận tốc sau: \(V=\frac{S}{t}\Rightarrow t=\frac{S}{V}\)
\(\Rightarrow t=t_1+t'+t_2-t''=\frac{S_1}{V_1}+\frac{1}{6}+\frac{S_2}{V_2}-\frac{1}{12}\)
Trong đó: \(S_1=\frac{1}{3}S\Rightarrow S_2=\frac{2}{3}S\)
Thay vào ta có:
\(t=\frac{S}{V_1}=\frac{\frac{1}{3}S}{15}+\frac{\frac{2}{3}S}{20}+\frac{1}{12}=\frac{1}{45}S+\frac{1}{30}S+\frac{1}{12}\Rightarrow\frac{S}{15}=\frac{1}{18}S+\frac{1}{12}\Rightarrow\frac{1}{90}S=\frac{1}{12}\Rightarrow S=7,5\left(km\right)\)
Vậy \(t=\frac{7,5}{15}=0,5\left(h\right)=30'\)
Đặt quãng đường là \(S\left(km\right)\)
Đổi 5 phút = \(\frac{1}{12}h\)
Thời gian dự định là \(\frac{S}{15}\)(giờ)
Đi \(\frac{1}{3}\)đoạn đường hết : \(\frac{\left(\frac{S}{3}\right)}{15}=\frac{S}{45}\)(giờ)
\(\frac{2}{3}\)đoạn đường còn lại học sinh đó đi hết :
\(\frac{\left(\frac{2}{3}S\right)}{20}=\frac{S}{30}\)(giờ)
Ta có :
\(\frac{S}{45}+10pt+\frac{S}{30}=\frac{S}{15}+5pt\)(Phụ chú : h là giờ; pt là phút)
\(\Rightarrow\left(\frac{1}{45}+\frac{1}{30}-\frac{1}{15}\right)S+5pt=0\)
\(\frac{1}{12}h-\frac{S}{90}=0\)
\(\frac{S}{90}=\frac{1}{12}\)
\(S=7,5\left(km\right)\)
Vậy;...
Câu 1: Giải :
a.Sau khi tăng tốc thêm 3 km/h thì đến nơi sớm hơn dự kiến là 1h ,mà S là như nhau nên theo bài ra ta có:
V1.t = (V1 +3 ).(t -1).
12.t = (12+3 ).(t -1).
12.t = 15.t -15.
15 = 15.t – 12.t.
5 = t.
b. Gọi t’1 là thời gian đi quãng đường \(\frac{s_1}{t'_1}=\frac{S_1}{V_1}\)
Thời gian sửa xe : t = 15 phút = 1/4 h.
Thời gian đi quãng đường còn lại : t’2 = \(\frac{S_1-S_2}{V_2}\)
Theo bài ra ta có : t1 – (t’1 + 1/4 + t’2) = 30 ph = 1/2 h.
T1 – S1/V1 – 1/4 - (S - S1)/V2 = 1/2. (1).
S/V1 – S/V1 – S1.(1/V1- 1/V2) = 1/2 +1/4 = 3/4 (2).
Từ (1) và (2) suy ra: S1.(1/V1 – 1/V2) = 1- 3/4 = 1/4.
Hay S1 = \(\frac{1}{4}.\frac{V_1-V_2}{V_2-V_1}\)\(=\frac{1}{4}.\frac{12.15}{15-12}=15\left(km\right)\)
a) Gọi độ dài quãng đường AB là S
=> Dự định = 4v
Nhưng trên thực tế: Nửa quãng đường đầu S = v.t1 , nửa quãng đường sau S = (v + 3) . t2
t1 + t2 = 4 - 1/3 = 11/3
Mà t1 = t2 = 2 (vì thời gian này bằng nửa thời gian dự định, đi nửa quãng đường đầu với vận tốc không đổi nên thời gian là một nửa)
=> t2 = 5/3
=> 4v = 2v + (v + 3). 5/3 => v = 15 (km/giờ) => S = 60 km
b)Đi 1h, s1 = 15km
Thời gian còn lại là
4giờ -1 giờ -0,5 giờ = 2,5 (giờ)
=> Quãng đường còn lại 45km
=> Vận tốc là :
45 : 2,5 = 18 (km/giờ)
ta có:
t=\(\frac{S}{v}\)
t'=\(\frac{S}{2v}+\frac{S}{2\left(v+3\right)}\)
do người đó đến sớm hơn dự định 20 phút nên:
t-t'=\(\frac{1}{3}\)
\(\Leftrightarrow\frac{S}{v}-\frac{S}{2v}-\frac{S}{2\left(v+3\right)}=\frac{1}{3}\)
\(\Leftrightarrow S\left(\frac{1}{v}-\frac{1}{2v}-\frac{1}{2\left(v+3\right)}\right)=\frac{1}{3}\)
\(\Leftrightarrow S\left(\frac{2v+6-\left(v+3\right)-v}{2v\left(v+3\right)}\right)=\frac{1}{3}\)
\(\Leftrightarrow S\left(\frac{3}{2v\left(v+3\right)}\right)=\frac{1}{3}\)
\(\Rightarrow S=\frac{2v^2+6v}{9}\left(1\right)\)
ta lại có:
\(t=\frac{S}{v}\Leftrightarrow\frac{S}{v}=4\Leftrightarrow S=4v\left(2\right)\)
thế (2) vào (1) ta có:
\(4v=\frac{2v^2+6v}{9}\)
\(\Leftrightarrow2v^2+6v=36v\)
\(\Rightarrow2v^2-30v=0\)
giải phương trình ta có:
v=15km hoặc v=0km(loại)
vậy S=60km
b)sau 1h người đó đi được:
v*1=15km
đoạn đường người đó còn phải đi là:
60-15=45km
do người đó nghỉ 30 phút nên người đó phải đi đoạn còn lại trong:
4-1-0.5=2.5h
vận tốc người đó phải đi lúc sau là:
45/2.5=18km/h
gọi:
t là thời gian dự định
S là quãng đường AB
ta có:
thời gian đi lúc đầu là:
t1=\(\frac{S_1}{v_1}=\frac{S_1}{40}\)
thời gian đi lúc sau là:
t2=\(\frac{S_2}{v_2}=\frac{S_2}{20}\)
do người này đến sớm hơn dự dịnh 30 phút nên:
t1+t2+0,5=t
\(\Leftrightarrow\frac{S_1}{40}+\frac{S_2}{60}+0,5=\frac{S}{40}\)
\(\Leftrightarrow\frac{3S_1+2S_2+60}{120}=\frac{3S}{120}\)
\(\Leftrightarrow3S_1+2S_2+60=3S\)
\(\Leftrightarrow3S_1+2\left(S-S_1\right)+60=3S\)
\(\Leftrightarrow S_1+60=S\)
do thời gian đầu người đó đi bằng 1/4 thời gian dự định nên:
t1=t/4
\(\Leftrightarrow\frac{S_1}{40}=\frac{S}{4.40}\)
\(\Leftrightarrow\frac{S_1}{40}=\frac{S_1+60}{160}\Rightarrow S_1=20km\)
\(\Rightarrow S=80km\)
\(\Rightarrow t=2h\)
thời gian để còn lại để đến B đúng thời gian dự định là
2-0.5-0.25=1.25(h)
quãng đường còn lại dài số km là:
S=v.t=1,25.14,4=18(km)
nếu không sửa xe 15 phút thì quãng dường 2 đi trong số h là:
2-0.5=1.5(h)
vận tốc đi quãng đường đầu là
v=S:t=18:1,5=12(km/h)
quãng đường đầu dài số km là
S=v.t=12.0,5=6(km)
cả quãng dường dài số km là
18+6=24(km)
MÌNH LÀM THỬ KO BIẾT CÓ ĐÚNG KO
~NẾU ĐÚNG TICK CHO MÌNH NHA~
Thời gian dự định của học sinh:
\(t=\dfrac{S}{15}\left(h\right)\)
Thời gian đi \(\dfrac{1}{3}S\) của học sinh là:
\(t_1=\dfrac{S}{3\cdot15}=\dfrac{S}{45}\left(h\right)\)
Thời gian đi \(\dfrac{2}{3}S\) còn lại của học sinh là:
\(t_2=\dfrac{2S}{3\cdot20}=\dfrac{S}{30}\left(h\right)\)
Theo đề ta có pt sau: \(t_1+t_2+\dfrac{10}{60}=t+\dfrac{5}{60}\)
\(\Rightarrow\dfrac{S}{45}+\dfrac{S}{30}+\dfrac{1}{6}=\dfrac{S}{15}+\dfrac{1}{12}\)
\(\Rightarrow S=7,5\left(km\right)\)
Thời gian dự định là:\(t=\dfrac{S}{15}=\dfrac{7,5}{15}=0,5\left(h\right)=30'\)
Gọi S là độ dài quãng đường
Thời gian dự định của học sinh :
\(t=\dfrac{S}{15}\) (*)
Thời gian đi \(\dfrac{1}{3}S\) của học sinh :
\(t_1=\dfrac{S}{3.15}=\dfrac{S}{45}\)
Thời gian đi \(\dfrac{2}{3}S\) còn lại của học sinh :
\(t_2=\dfrac{2S}{3.20}=\dfrac{S}{30}\)
Ta có pt : \(t_1+t_2+\dfrac{1}{6}=t+\dfrac{1}{14}\)
<=> \(\dfrac{S}{45}+\dfrac{S}{30}+\dfrac{1}{6}=\dfrac{S}{15}+\dfrac{1}{14}\)
Giải pt ,tá dược : S =9 (km)
Thay S= 9 vào (*) , ta đc : t = \(\dfrac{S}{15}=\dfrac{9}{15}=0,6\) (h)
Vay .................................
ta có:
vận tốc dự định của người đó là:
\(v=\frac{S}{t}=40\) km/h
thời gian người đó đi hết 3/5 quãng đường là:
\(t_1=\frac{3S}{5v}=1,5h\)
thời gian còn lại của người đó là:
t2=t-t1-0,2=0,8h
quãng đường người đó còn phải đi là:
S'=2/5.S=40km
vận tốc người đó lúc sau để kịp giờ là:
\(v'=\frac{S'}{t'}=50\)
đến B đúng dự định thì ta phải đi qua cầu Đông hà nối liền Bắc Giang và qua đường sắt Cao Bằng rồi đến Lạng Sơn. Vậy thì vận tốc bạn hỏi bố của bạn nếu thực hành. Chúc bạn thành công trong cuộc sống. Bước tới đèo ngang bóng xế tà. Cỏ cây chen lá, lá xen hoa. Lom khom dưới núi tiều vài chú, lác đác bên sông chợ mấy nhà. We don't don't anymore.