Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3 cách viết của số hữu tỉ \(\frac{-3}{5}\)là : \(\frac{-6}{10};\frac{3}{-5};-0.6\)
số hữu tỉ âm là các số hữu tỉ bé hơn 0
số hữu tỉ dương là các số hữu tỉ lớn hơn 0
|x| là khoảng cách từ X đến điểm 0 trên trục số
1 huu ti duong la a/b thuoc Z , b khac 0 a/b >0
Huu ti am .............................a/b<0
1. 3 cách viết là: -0,6 ; -6/10 ; -9/15 . (Cậu tự biểu diễn nhé !)
2. Số hữu tỉ dương là những số hữu tỉ lớn hơn 0. Số hữu tỉ âm là những số hữu tỉ nhỏ hơn 0. Số 0 không phải là số hữu tỉ dương và cũng không phải là số hữu tỉ âm.
3. Gía trị tuyệt đối của 1 số hữu tỉ x, kí hiệu IxI là khoảng cách từ điểm x đến điểm 0 trên trục số.
4. Lũy thừa bật n của số hữu tỉ x, kí hiệu là x mũ n, là tích của n thừa số x, n là một số tự nhiên lớn hơn 1. Vd: xn = x.x...x (x thuộc Q. n thuộc N. n > 1)
5. Nhân 2 lũy thừa cùng cơ số: xm . xn = xm+n
Chia 2 lũy thừa cùng cơ số khác 0: xm : xn = xm-n (x khác 0. m > hoặc = n)
Lũy thừa của một lũy thừa: (xm)n = xm.n)
Lũy Thừa của một tích: (x.y)n = xn . yn
Lũy thừa của một thương: (x/y)n = xn/yn .
6. Thương của phép chia số hữu tỉ x cho số hữu tỉ y (y khác 0) gọi là tỉ số của hai số x và y, kí hiệu là x/y hay x:y . Vd: tỉ số của 2 số -5,12 và 10,25 được viết là -5,12/10,25 hay -5,12:10,25.
7. Tỉ lệ thức là đẳng thức của 2 tỉ số a/b = c/d hay a:b = c:d . Từ tỉ lệ thức a/b = c/d ta suy ra a/b=c/d=a+b/c+d=a-c/b-d, với b khác +- d . Từ dãy tỉ số bằng nhau a/b=c/d/e/f ta suy ra: a/b = c/d = e/f = a+c+e/b+d+f = a-c+e/b-d+f, với giả thiết các số đều có nghĩa.
8. Các số viết được dưới dạng số thập phân vô hạn không tuần hoàn được gọi là số vô tỉ. Vd: Số\(\) pi = 3,45557532323525970,... 0,54455552244178 là các số vô tỉ.
9. Số hữu tỉ và số vô tỉ gọi chung là số thực.
Mỗi điểm trên trục số đều biểu diễn một số thực. Vì thế trục số còn gọi là trục số thực. Tập hợp các số thực lấp đầy trục số.
10. Căn bậc 2 của một số a không âm là số x sao cho x2 = a .
. Cái này trong sách có mà bạn. Chúc bạn học tốt nha !
SGK nha bạn!
1) Khi chuyển một số hạng từ vế này sang vế kia của một đẳng thức , ta phải đổi dấu số hạng đó
Với mọi \(x,y,z\in Q:x+y=z\Rightarrow x=z-y\)
2) Với \(x=\frac{a}{b},y=\frac{c}{d}\) Ta có : \(x.y=\frac{a}{b}.\frac{c}{d}=\frac{a.c}{b.d}\)
3) Với mọi \(x\in Q\) ta luôn có : \(\left|x\right|\ge0,\left|x\right|=\left|-x\right|\) và \(\left|x\right|\ge x\)